日期:2022-06-17
这是九年级《一元二次方程》教案,是优秀的数学教案文章,供老师家长们参考学习。
教学目标:
1、知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式 ( ≠0)2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。3、会用试验的方法估计一元二次方程的解。
重点难点:
1.一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数”。
2. 理解用试验的方法估计一元二次方程的解的合理性。
教学过程:
一 做一做:
1.问题一 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?
分 析:设长方形绿地的宽为x米,不难列出方程
x(x+10)=900
整理可得 x2+10x-900=0. (1)
2.问题2
学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.
解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册;同样,明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)(1+x)=5(1+x)2万册.可列得方程
5(1+x)2=7.2,
整理可得 5x2+10x-2.2=0. (2)
3.思考、讨论
这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?
( 学生分组讨论,然后各组交流 )共同特点:(1) 都是整式方程 (2)只含有一个未知数 (3) 未知数的最高次数是2
二、 一元二次方程的概念
上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程).通常可写成如下的一般形式:
ax2+bx+c=0(a、b、c是已知数,a≠0)。 其中 叫做二次项, 叫做二次项系数; 叫做一次项, 叫做一次项系数,叫做常数项。.
三、 例题讲解与练习巩固
1.例1下列方程中哪些是一元二次方程?试说明理由。
(1) (2) (3) (4)
2.例2 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:
1) 2)(x-2)(x+3)=8 3)
说明: 一元二次方程的一般形式 ( ≠0)具有两个特征:一是方程的右边为0;二是左边的二次项系数不能为0。此外要使学生意识到:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。
3.例3 方程(2a—4)x2 —2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?
本题先由同学讨论,再由教师归纳。
解:当 ≠2时是一元二次方程;当 =2, ≠0时是一元一次方程;
4.例4 已知关于x的一元二次方程(m-1)x2+3x-5m+4=0有一根为2,求m。
分析:一根为2即x=2,只需把x=2代入原方程。
5.练习一 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项
2x(x-1)=3(x-5)-4
练习二 关于 的方程,在什么条件下是一元二次方程?在什么条件下是一元一次方程?
本课小结:
1、只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。
2、一元二次方程的一般形式为 ( ≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
3、在实际问题转化为数学模型( 一元二次方程 ) 的过程中,体会学习一元二次方程的必要性和重要性。
布置作业:课本第27页习题1、2、3
22.2.2一元二次方程的解法
教学目标:
1、会用直接开平方法解形如 (a≠0,ab≥0)的方程;
2、灵活应用因式分解法解一元二次方程。
3、使学生了解转化的思想在解方程中的应用,渗透换远方法。
重点难点:
合理选择直接开平方法和因式分解法较熟练地解一元二次方程,理解一元二次方程无实根的解题过程。
教学过程:
问:怎样解方程 的?
让学生说出作业中的解法,教师板书。
解:1、直接开平方,得x+1=±16
所以原方程的解是x1=15,x2=-17
2、原方程可变形为
方程左边分解因式,得
(x+1+16)(x+1-16)=0
即可(x+17)(x-15)=0
所以x+17=0,x-15=0
原方程的蟹 x1=15,x2=-17
二、例题讲解与练习巩固
1、例1 解下列方程
(1)(x+1)2-4=0; (2)12(2-x)2-9=0.
分 析 两个方程都可以转化为 (a≠0,ab≥0)
的形式,从而用直接开平方法求解.
解 (1)原方程可以变形为
(x+1)2=4,
直接开平方,得
x+1=±2.
所以原方程的解是 x1=1,x2=-3.
原方程可以变形为
________________________,
有 ________________________.
所以原方程的解是 x1=________,x2=_________.
2、说明:(1)这时,只要把 看作一个整体,就可以转化为 ( ≥0)型的方法去解决,这里体现了整体思想。
3、练习一 解下列方程:
(1)(x+2)2-16=0; (2)(x-1)2-18=0;
(3)(1-3x)2=1; (4)(2x+3)2-25=0.
三、读一读
四、讨论、探索:解下列方程
(1)(x+2)2=3(x+2) (2)2y(y-3)=9-3y (3)( x-2)2 — x+2 =0
(4)(2x+1)2=(x-1)2 (5) 。
本课小结:
1、对于形如 (a≠0,a ≥0)的方程,只要把 看作一个整体,就可转化为(n≥0)的形式用直接开平方法解。
2、当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解法解。
布置作业:课本第37页习题1(5、6)、P38页习题2(1、2)
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号