当前位置:首页 > 教案教学设计 > 数学教案

基本不等式如何引入

日期:2022-01-19

这是基本不等式如何引入,是优秀的数学教案文章,供老师家长们参考学习。

基本不等式如何引入

基本不等式如何引入第 1 篇

  教学准备

  教学目标

  1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

  2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

  3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

  教学重难点

  1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);

  2、利用基本不等式求解实际问题中的最大值和最小值。

  教学过程

  一、 创设情景,提出问题;

  设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:

  上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

  [问]你能在这个图中找出一些相等关系或不等关系吗?

  本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式

  在此基础上,引导学生认识基本不等式。

  三、理解升华:

  1、文字语言叙述:

  两个正数的算术平均数不小于它们的几何平均数。

  2、联想数列的知识理解基本不等式

  已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?

  两个正数的等差中项不小于它们正的等比中项。

  3、符号语言叙述:

  4、探究基本不等式证明方法:

  [问] 如何证明基本不等式?

  (意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。)

  方法一:作差比较或由

  展开证明。

  方法二:分析法(完成课本填空)

  设计依据:课本是学生了解世界的窗口和工具,所以,课本必须成为学生赖以学会学习的文本.在教学中要让学生学会认真看书、用心思考,养成讲讲议议、

  动手动笔、仔细观察、用心体会的好习惯,真正学会读“数学书”。

  点评:证明方法叫做分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法.

  5、探究基本不等式的几何意义:

  借助初中阶段学生熟知的几何图形,引导学生

  几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。

  四、探究归纳

  下列命题中正确的是

  结论:

  若两正数的乘积为定值,则当且仅当两数相等时,它们的和有最小值;

  若两正数的和为定值,则当且仅当两数相等时,它们的乘积有最大值。

  简记为:“一正、二定、三相等”。

  五、领悟练习:

  公式应用之二:(最优化问题)

  设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中

  (1) 在学农期间,生态园中有一块面积为100m2的矩形茶地,为了保护茶叶的健康生长,学校决定用篱笆围起来,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?

  (2)现在学校仓库有一段长为36m的篱笆,要围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。最大面积是多少?

  六、反思总结,整合新知:

  通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要

  请教?

  设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.

  老师根据情况完善如下:

  两种思想:数形结合思想、归纳类比思想。

  三个注意:基本不等式求函数的最大(小)值是注意:“一正二定三相等”

基本不等式如何引入第 2 篇

  【学习目标】

  1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

  2.过程与方法:通过实例探究抽象基本不等式;

  3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

  【能力培养】

  培养学生严谨、规范的学习能力,分析问题、解决问题的能力。

  【教学重点】

  应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;及其在求最值时初步应用

  【教学难点】

  基本不等式 等号成立条件

  【教学过程】

  一、课题导入

  基本不等式 的几何背景:如图是在北京召开的第24界国际数学家大会的会标,教师引导学生从面积的关系去找不等关系。

  二、讲授新课

  1.问题探究——探究图形中的不等关系。

  将图中的“风车”抽象成如图,在正方形abcd中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。

  当直角三角形变为等腰直角三角形,即a=b时,正方形efgh缩为一个点,这时有 。

  2.总结结论:一般的,如果

  (结论的得出尽量发挥学生自主能动性,让学生总结,教师适时点拨引导)

  3.思考证明:(让学生尝试给出它的'证明)

  4.特别的,如果a>0,b>0,我们用 分别代替a、b ,可得,

  通常我们把上式写作:

  ①从不等式的性质推导基本不等式

  用分析法证明:(略)

  ②理解基本不等式 的几何意义

  探究:对课本第98页的“探究”( 几何证明)

  注:在数学中,我们称 为a、b的算术平均数,称 为a、b的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.

  5、例:当时,取什么值,的值最小?最小值是多少?

  6、课时小结

  本节课,我们学习了重要不等式a2+b2≥2ab;两正数a、b的算术平均数( ),几何平均数( )及它们的关系( ≥ ).它们成立的条件不同,前者只要求a、b都是实数,而后者要求a、b都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将进一步学习它们的应用).

  7、作业:

  课本第100页习题[a]组的第1、2题

  板书 设 计

  课题: 3.4基本不等式

  一、两个不等式

  二、例题及练习

基本不等式如何引入第 3 篇

一、教学目标

【知识与技能】

掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。

【过程与方法】

经历基本不等式的推导与证明过程,提升逻辑推理能力。

【情感、态度与价值观】

在猜想论证的过程中,体会数学的严谨性。

二、教学重难点

【教学重点】

基本不等式。

【教学难点】

基本不等式的推导以及证明过程。

三、教学过程

(一)引入新课

PPT出示的是北京召开的第24届国际数学家大会的会标,会标是根据我国古代数学家赵爽的弦图设计的。

提问:你能在这个图中找到不等关系么?引出课题。

(二)探索新知

1.基本不等式的推导。

学生活动:利用赵爽弦图推导出基本不等式。

(2)一段长为36m的篱笆围成矩形菜园,问这个矩形的长、宽各为多少时菜园面积最大?最大面积是多少?

(四)小结作业

提问:今天有什么收获?

引导学生回顾:基本不等式以及推导证明过程。

课后作业:课后练习1。

四、板书设计

基本不等式如何引入第 4 篇

一、教学目标

【知识与技能】

掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。

【过程与方法】

在经历基本不等式的推导与证明过程中,提升逻辑推理能力。

【情感、态度与价值观】

在猜想论证的过程中,体会数学的严谨性。

二、教学重难点

【教学重点】

基本不等式。

【教学难点】

基本不等式的推导以及证明过程。

三、教学过程

(一)引入新课

PPT出示的是北京召开的第24届国际数学家大会的会标,会标是根据我国古代数学家赵爽的弦图设计的。

提问:你能在这个图中找到不等关系么?引出课题。

(二)探索新知

1.基本不等式的推导。

学生活动:利用赵爽弦图推导出基本不等式。

(四)小结作业

提问:今天有什么收获?

引导学生回顾:基本不等式以及推导证明过程。

课后作业:课后练习1。

四、板书设计

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号