日期:2021-06-01
这是相似三角形拓展定理,是优秀的数学教案文章,供老师家长们参考学习。
相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
相似三角形判定定理1:两角对应相等,两三角形相似(ASA)
直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)
判定定理3:三边对应成比例,两三角形相似(SSS)
相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
性质定理2:相似三角形周长的比等于相似比
性质定理3:相似三角形面积的比等于相似比的平方
(一)教材的地位和作用
《相似三角形的应用》选自人民教育出版社义务教育课程标准实验教科书中数学九年级上册第二十七章。相似与轴对称、平移、旋转一样,也是图形之间的一种变换,生活中存在大量相似的图形,让学生充分感受到数学与现实世界的联系。相似三角形的知识是在全等三角形知识的基础上的拓展和延伸,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化。在这之前学生已经学习了相似三角形的定义、判定,这为本节课问题的探究提供了理论的依据。本节内容是相似三角形的有关知识在生产实践中的广泛应用,通过本节课的学习,一方面培养学生解决实际问题的能力,另一方面增强学生对数学知识的不断追求。
(二)教学目标
1、。知识与能力:
1) 进一步巩固相似三角形的知识.
2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.
2.过程与方法:
经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。
3.情感、态度与价值观:
1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。
2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。
(三)教学重点、难点和关键
重点:利用相似三角形的知识解决实际问题。
难点:运用相似三角形的判定定理构造相似三角形解决实际问题。
关键:将实际问题转化为数学模型,利用所学的知识来进行解答。
【教法与学法】
(一)教法分析
为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:
1.采用情境教学法。整节课围绕测量物体高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学来源于生活又服务于生活”。
2.贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。
3.采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。
(二)学法分析
按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。
【教学过程】
一、知识梳理
1、判断两三角形相似有哪些方法?
1)定义: 2)定理(平行法):
3)判定定理一(边边边):
4)判定定理二(边角边):
5)判定定理三(角角):
2、相似三角形有什么性质?
对应角相等,对应边的比相等
(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)
二、情境导入
胡夫金字塔是埃及现存规模的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低 。
古希腊,有一位伟大的科学家泰勒斯。一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,因为很难爬到塔顶的。亲爱的同学,你知道泰勒斯是怎样测量大金字塔的高度的吗?
(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)
三、例题讲解
例1(教材P49例3——测量金字塔高度问题)
《相似三角形的应用》教学设计 分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.
解:略(见教材P49)
问:你还可以用什么方法来测量金字塔的高度?(如用身高等)
解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)
例2(教材P50练习——测量河宽问题)
《相似三角形的应用》教学设计《相似三角形的应用》教学设计 分析:设河宽AB长为x m ,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有 ,即 《相似三角形的应用》教学设计 .再解x的方程可求出河宽.
解:略(见教材P50)
问:你还可以用什么方法来测量河的宽度?
解法二:如图构造相似三角形(解法略).
四、巩固练习
1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?
2.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高?
五、回顾小结
一 )相似三角形的应用主要有如下两个方面
1 测高(不能直接使用皮尺或刻度尺量的)
2 测距(不能直接测量的两点间的距离)
二)测高的方法
测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决
三 )测距的方法
测量不能到达两点间的距离,常构造相似三角形求解
(落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)
六、拓展提高
怎样利用相似三角形的有关知识测量旗杆的高度?
七、作业
课本习题27.2 10题、11题。
【教学设计说明】
相似应用最广泛的是测量学中的应用,在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解。鉴于这一点,我设计整节课围绕测量物体高度这个问题展开,通过一个个问题的解决,一方面,促使学生了解测量物体高度的方法,从而学会设计利用相似三角形解决问题的方案;另一方面,会构造与实物相似的三角形,通过对实际问题的分析和解决,让学生充分感受到数学与现实世界的联系,教学中既发挥教师的主导作用,又注重凸现学生的主体地位,“以学生活动为中心”构建课堂教学的基本框架,以“探究交流为形式”作为课堂教学的基本模式,以全面发展学生的能力作为根本的教学目标,限度地调动学生学习的积极性和主动性。
教学目标:
知识与技能
1、理解掌握相似三角形周长比、面积比与相似比之间的关系;掌握定理的证明方法。
2、灵活运用相似三角形的判定和性质,提高分析,推理能力。
过程与方法:
1、对性质定理的探究经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度。
2、通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题,复杂问题转化为简单问题的思想方法。
3、通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力。
情感与态度:
在学习和探讨的过程中,体验特殊到一般的认知规律;通过学生之间的交流合作,在合作中体验成功的喜悦,树立学习的自信心;通过对生活问题的解决,体会数学知识在实际中的广泛应用。
教学重点:相似三角形性质定理的探索及应用
教学难点:综合应用相似三角形的性质与判定探索三角形中面积之间的关系
教学方法与手段:探究式教学、小组合作学习、多媒体教学
教学过程:
一、创设情境,引入新课
1、我们已经学了相似三角形的哪些性质?
2、问题情境:
某施工队在道路拓宽施工时遇到这样一个问题,马路旁原有一个面积为100平方米、周长为80米的三角形绿化地,由于马路拓宽绿地被削去了一个角,变成了一个梯形,原绿化地一边AB的长由原来的30米缩短成18米。现在的问题是:被削去的部分面积有多少?周长是多少?你能解决这个问题吗?
二、实践交流,探索新知
1、看一看:
△ABC与△A′B′C′有什么关系?为什么?
2、算一算:
△ABC与△A′B′C′的相似比是多少?
△ABC与△A′B′C′的周长比是多少?面积比是多少?
3、想一想:
你发现上面两个相似三角形的周长比和相似比有什么关系?面积比与相似比又有什么关系?
4、验一验:是不是任何两个相似三角形都有此关系呢?你能加以验证吗?
5、在学生思考、讨论的基础上给出证题过程(多媒体)
6、归纳小结;相似三角形性质定理2
相似三角形的周长比等于相似比,面积比等于相似比的平方。
三、基础训练,加深理解
练一练:已知两个三角形相似,请完成下列表格:
归纳:周长比等于相似比;已知相似比、周长比,求面积比要平方,已知面积比求相似比或周长比则要平方。
四、综合应用,解决问题
已知:如图,DE∥BC,AB=30m,BD=18m,△ABC的周长为80m,面积为100m2,求△ADE的周长和面积?
五、拓展延伸,共同提高
1、 过E作EF∥AB交BC于F,其他条件不变,则△EFC的面积等于多少?平行四边形BDEF的面积为多少?
2、 若设S△ABC=S,S△ADE=S1,S△EFC=S2,试猜想:S与S1、S2之间存在怎样的关系?
六、类似猜想,深入探究
探究:如图,DE∥BC,FG∥AB,MN∥AC,且DE、FG、MN交于点P,若设S△DMP=S1,S△PEF=S2,S△GNP=S3,S△ABC=S,S与S1、S2、S3之间是否也有类似结论?猜想并加以论证。
七、回顾反思,畅谈心得
本节课你有何收获?
1、这节课我们学到了哪些知识?
2、我们是用哪些方法获得这些知识的?
3、通过本节课的学习,你有没有新的想法或发现?你觉得还有什么问题需要继续讨论吗?
八、布置作业
1、作业本2、3(2)(3)、4、5
2、探究推理过程课外整理完成,各组自行组织讨论交流。
教学设计说明:
1、本节课从一个较为实际的生活情境引入,设置问题悬念,激发学生的求知欲望,使学生掌握将实际问题转化为数学问题的思想方法,感受数学知识在生活中的广泛应用。
2、性质定理2的学习和探索,注重于知识的形成过程,使学生体验特殊到一般的认知规律,以及由观察——猜想——论证——归纳的数学思维过程。
3、由问题的解决变式到例题,再经例题加以拓展延伸,使本节内容衔接更趋自然,同时使学生充分体会类比的数学思想以及图形之间的互相联系。
4、教学中注重小组之间的合作交流,在合作中加强学生的团体意识,体验成功的喜悦,树立学习的自信心。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号