当前位置:首页 > 教案教学设计 > 数学教案

三角形全等的判定教案sss

日期:2021-12-16

这是三角形全等的判定教案sss,是优秀的数学教案文章,供老师家长们参考学习。

三角形全等的判定教案sss

三角形全等的判定教案sss第 1 篇

教学目标

知识:掌握“边边边”条件的内容,并能初步应用“边边边”条件判定两个三角形全等 .

能力:使学生经历探索三角形全等条件的过程,体会如何探索研究问题,并初步体会分类思想,提高学生分析问题和解决问题的能力.

思想:通过画图、比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯。

教学重点、难点:

重点:利用边边边证明两个三角形全等

难点:探究三角形全等的条件

教学设计

第一环节:复习旧知

问题1: 什么叫全等三角形?

问题2: 全等三角形有什么性质?

第二环节:情境探索

1、小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,请你说说小明该怎么办?

全等三角形的判定(SSS)教学设计

小组讨论,问题初探。(这是一个什么数学问题?)

问题1:如图:在ABC和DEF中,AB=DE,BC=EF,AC=DF, ∠A=∠D, ∠B=∠E, ∠C=∠F,则ABC和DEF全等吗?

全等三角形的判定(SSS)教学设计

问题2: ABC和DEF全等是不是一定要满足AB=DE,BC=EF,AC=DF, ∠A=∠D, ∠B=∠E, ∠C=∠F这六个条件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角形全等吗?

2、一个条件可分为:一组边相等和一组角相等

两个条件可分为:两个边相等、两个角相等、一组边一组角相等

问题1:只给一个条件(一组对应边相等或一组对应角相等),能否判定两个三角形全等?

只给一条边:

全等三角形的判定(SSS)教学设计

只给一个角:

全等三角形的判定(SSS)教学设计

问题2:给出两个条件,能否判定两个三角形全等?

一边一内角:

全等三角形的判定(SSS)教学设计

两内角:

全等三角形的判定(SSS)教学设计

两边:

全等三角形的判定(SSS)教学设计

问题3:

两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?

3、给出三个条件,三个条件可分为几种?

三条边相等、三个角相等、两角一边相等、两边一角相等

问题1:能否画ABC,使AB=2,AC=3,BC=4?把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?

问题2:如何归纳所的结论?

有三边对应相等的两个三角形全等.可以简写成 “边边边” 或“ SSS ”

问题3:怎样用数学语言表述?

在ABC和 DEF中

AB=DE

BC=EF

CA=FD

∴ ABC DEF(SSS)

第三环节:题例训练

1、如图,AD=CB,AC=BD,ABC和DAB是否全等?试说明理由。

解: ABCDCB理由如下:

在ABC和DCB中

全等三角形的判定(SSS)教学设计

全等三角形的判定(SSS)教学设计AD = BC

AC = DB

____=_____

∴ABC ( )

2. 如下图,ABC是一个刚架,AB=AC,AD是连接A与BC中点D的支架。

求证: ABD ACD

全等三角形的判定(SSS)教学设计

第四环节:拓展应用,中考在线

1.(2012•济宁)用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( )

全等三角形的判定(SSS)教学设计 A.SSS B.ASA

C.AAS D.角平分线上的点到角两边距离相等。

2.(2011•十堰)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由此做法得MOCNOC的依据是( )

全等三角形的判定(SSS)教学设计

A.AAS B.SAS C.ASA D.SSS

3. (2012•十堰)如图,在四边形ABCD中,AB=AD,CB=CD. 求证:∠B=∠D

全等三角形的判定(SSS)教学设计

小结:1、本节所讲主要内容为利用“边边边”证明两个三角形全等。

2、证明三角形全等的书写步骤。

3证明三角形全等应注意的问题。

第五环节:总结反思

活动内容:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。

问题1:本节课你认为自己解决的最好的问题是什么?

问题2:本节课你有哪些收获?

问题3:通过今天的学习,你想进一步探究的问题是什么?

第六环节:布置作业

1、如图,D、F是线段BC上的两点,AB=EC,AF=ED,要使ABFECD ,还需要条件

全等三角形的判定(SSS)教学设计

2、已知:B、E、C、F在同一直线上, AB=DE,AC=DF,并且BE=CF,

求证: ABC DEF

3、如图,已知AB=DC,DB=AC

(1)求证:∠ABD=∠DCA.(注:证明过程要求给出每一步结论成立的依据.)

(2)在(1)的证明过程中,需要作辅助线,它的意图是什么?

全等三角形的判定(SSS)教学设计

三角形全等的判定教案sss第 2 篇

  三角形全等的判定方法一:

  边边边公理,是三角形判定方法研究的第一课时。

  本课在教学时有三个难点:

  1.体会有一组量、两组量对应相等的两个三角形不一定全等;

  2.三组量对应相等的各种情况的分类;

  3.利用“边边边”判定全等推理的书写格式。

  本节课的重点是探索三角形全等的“边边边”的条件;了解三角形的稳定性及其在生活中的应用;运用三角形全等的“边边边”的条件判别两个三角形是否全等,并能解决一些简单的实际问题。

  有学生的预习,难点1的突破还是可以很快进行的,但是反例的列举还不够。难点2是学生分类解决问题能力的检验,学生能够很顺利地分成四类:三条边、两边一角、两角一边、三个角,但是不能更加细致地分类,不能进一步把两边一角分为两边及其它们的'夹角、两边及其中一边的对角;不能把两角一边进一步分为两角及其夹边、两角及其中一角的对边。从课上的实施看,四种情况的分类基本做得比较好。课后细想,进一步的分类,本课也可以不再进行,可以到下一课再细化。理由是:学习是一个循序渐进的过程,没有必要每一次的新知引进都要一步到位,况且本课要处理的问题还是挺多的,课堂教学要有所侧重。难点3的引导较好,但是学生全等推理的书写格式还有待于继续训练。证明全等的准备条件在写两个三角形全等之前就要书写说明;直接条件直接写,隐含条件要挖掘。

  从本课的教学情况看,学生的预习还需指导,学生对课本上探究2的操作比较粗糙,课堂上需要教者认真示范引领;课堂容量的把握要适度,本课我安排了两个例题,一个开放型填空题和四个解答证明题,学生的思维训练是充分的,四个证明题也是有学生上黑板板演的,多数同学是能够全部完成,但是不可否认,还是有同学没有来得及,作一个角等于已知角的教学还不很充分,全面提高学生的教学质量要真正得到保证。

  在课堂上让学生能参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法。通过三角形稳定性的实例,让学生产生了学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下了基础。

三角形全等的判定教案sss第 3 篇

教学目标

1.了解三角形的稳定性,会应用“边边边”判定两个三角形全等.

2.经历探索“边边边”判定全等三角形的过程,解决简单的问题.

3.培养有条理的思考和表达能力,形成良好的合作意识.

重、难点与关键

1.重点:掌握“边边边”判定两个三角形全等的方法.

2.难点:理解证明的基本过程,学会综合分析法.

3.关键:掌握图形特征,寻找适合条件的两个三角形.

教具准备

一块形状如图1所示的硬纸片,直尺,圆规.

(1) (2)

教学方法

采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.

教学过程

一、设疑求解,操作感知

【教师活动】(出示教具)

问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.

【学生活动】观察,思考,回答教师的`问题.方法如下:可以将图1的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,剪下模板就可去割玻璃了.

【理论认知】

如果ABCA′B′C′,那么它们的对应边相等,对应角相等.反之,如果ABC与A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.

这六个条件,就能保证ABCA′B′C′,从刚才的实践我们可以发现:只要两个三角形三条对应边相等,就可以保证这两块三角形全等.

信不信?

【作图验证】(用直尺和圆规)

先任意画出一个ABC,再画一个A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的A′B′C′剪下来,放在ABC上,它们能完全重合吗?(即全等吗)

【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)

画一个A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:

1.画线段取B′C′=BC;

2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;

3.连接线段A′B′、A′C′.

【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”

【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.

(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).

(2)判断两个三角形全等的推理过程,叫做证明三角形全等.

【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.

二、范例点击,应用所学

【例1】如课本图11.2─3所示,ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证ABDACD.(教师板书)

【教师活动】分析例1,分析:要证明ABDACD,可看这两个三角形的三条边是否对应相等.

证明:D是BC的中点,

∴BD=CD

在ABD和ACD中

∴ABDACD(SSS).

【评析】符号“”表示“因为”,“∴”表示“所以”;从例1可以看出,证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.

三、实践应用,合作学习

【问题思考】

已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?

【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.

【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”

【教学形式】先独立思考,再合作交流,师生互动.

四、随堂练习,巩固深化

课本练习.

【探研时空】

如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?你能找到一对全等三角形吗?说明你的理由.(BC=EF,ABCDFE)

五、课堂总结,发展潜能

1.全等三角形性质是什么?

2.正确地判断出全等三角形的对应边、对应角,利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?

3.“边边边”判定法告诉我们什么呢?(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)

六、布置作业,专题突破

1.习题11.2第1,2题.

2.选做课时作业设计.

教学反思:

首先,本节课重点关注:“一个条件”、“两个条件”包括的情形,以及不能形成的原因,先让学生自行探索,关键时刻老师再加以引导并利用多媒体演示。让学生互动起来,动手实践操作,形成认知。培养学生对新知识的探究方法及能力。其次,课前我准备了三对长短各不相同的6根小木棍,让学生摆成两个三角形,猜一猜是不是全等?后通过重合验证所猜结论,这样既培养学生动手操作能力,又充分调动了学生学习的积极性。然后,本节课在难点的突破、激发学生的兴趣、动手操作上取得了一定的成功,但是在以后教学中,也有值得思考的地方:(1)提前让学生准备好学具(如纸、剪刀、圆规等),分组时,优差互补,让人人学有所得。(2)教学时应多关注学生,在学习新知识后,虽然大部分学生掌握了,但少数后进生仍然不理解。(3)要多举例学生熟悉的案例,如:补全损坏的三角形。最后,由于证明三角形全等的书写过程与前面的证明书写过程略有不同,同时为了书写规范,我板演了三角形全等的书写过程并讲解。

总之,在数学课堂教学中,教师需时时刻刻注意给学生提供参考的机会,体现学生的主体地位,充分发挥学生的主观能动作用,尽量为学生提供“做中学”的平台,让学生在做的过程中借助自己已有的知识和方法主动探索新知识,扩大自己的知识结构,发展能力,从而使课堂教学真正为学生发展服务。

三角形全等的判定教案sss第 4 篇

教学目标

1.了解三角形的稳定性,会应用“边边边”判定两个三角形全等.

2.经历探索“边边边”判定全等三角形的过程,解决简单的问题.

3.培养有条理的思考和表达能力,形成良好的合作意识.

重、难点与关键

1.重点:掌握“边边边”判定两个三角形全等的方法.

2.难点:理解证明的基本过程,学会综合分析法.

3.关键:掌握图形特征,寻找适合条件的两个三角形.

教具准备

一块形状如图1所示的硬纸片,直尺,圆规.

(1) (2)

教学方法

采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.

教学过程

一、设疑求解,操作感知

【教师活动】(出示教具)

问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.

【学生活动】观察,思考,回答教师的`问题.方法如下:可以将图1的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,剪下模板就可去割玻璃了.

【理论认知】

如果ABCA′B′C′,那么它们的对应边相等,对应角相等.反之,如果ABC与A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.

这六个条件,就能保证ABCA′B′C′,从刚才的实践我们可以发现:只要两个三角形三条对应边相等,就可以保证这两块三角形全等.

信不信?

【作图验证】(用直尺和圆规)

先任意画出一个ABC,再画一个A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的A′B′C′剪下来,放在ABC上,它们能完全重合吗?(即全等吗)

【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)

画一个A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:

1.画线段取B′C′=BC;

2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;

3.连接线段A′B′、A′C′.

【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”

【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.

(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).

(2)判断两个三角形全等的推理过程,叫做证明三角形全等.

【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.

二、范例点击,应用所学

【例1】如课本图11.2─3所示,ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证ABDACD.(教师板书)

【教师活动】分析例1,分析:要证明ABDACD,可看这两个三角形的三条边是否对应相等.

证明:D是BC的中点,

∴BD=CD

在ABD和ACD中

∴ABDACD(SSS).

【评析】符号“”表示“因为”,“∴”表示“所以”;从例1可以看出,证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.

三、实践应用,合作学习

【问题思考】

已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?

【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.

【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”

【教学形式】先独立思考,再合作交流,师生互动.

四、随堂练习,巩固深化

课本练习.

【探研时空】

如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?你能找到一对全等三角形吗?说明你的理由.(BC=EF,ABCDFE)

五、课堂总结,发展潜能

1.全等三角形性质是什么?

2.正确地判断出全等三角形的对应边、对应角,利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?

3.“边边边”判定法告诉我们什么呢?(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)

六、布置作业,专题突破

1.习题11.2第1,2题.

2.选做课时作业设计.

教学反思:

首先,本节课重点关注:“一个条件”、“两个条件”包括的情形,以及不能形成的原因,先让学生自行探索,关键时刻老师再加以引导并利用多媒体演示。让学生互动起来,动手实践操作,形成认知。培养学生对新知识的探究方法及能力。其次,课前我准备了三对长短各不相同的6根小木棍,让学生摆成两个三角形,猜一猜是不是全等?后通过重合验证所猜结论,这样既培养学生动手操作能力,又充分调动了学生学习的积极性。然后,本节课在难点的突破、激发学生的兴趣、动手操作上取得了一定的成功,但是在以后教学中,也有值得思考的地方:(1)提前让学生准备好学具(如纸、剪刀、圆规等),分组时,优差互补,让人人学有所得。(2)教学时应多关注学生,在学习新知识后,虽然大部分学生掌握了,但少数后进生仍然不理解。(3)要多举例学生熟悉的案例,如:补全损坏的三角形。最后,由于证明三角形全等的书写过程与前面的证明书写过程略有不同,同时为了书写规范,我板演了三角形全等的书写过程并讲解。

总之,在数学课堂教学中,教师需时时刻刻注意给学生提供参考的机会,体现学生的主体地位,充分发挥学生的主观能动作用,尽量为学生提供“做中学”的平台,让学生在做的过程中借助自己已有的知识和方法主动探索新知识,扩大自己的知识结构,发展能力,从而使课堂教学真正为学生发展服务。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号