当前位置:首页 > 教案教学设计 > 数学教案

中心对称是几年级美术

日期:2021-12-23

这是中心对称是几年级美术,是优秀的数学教案文章,供老师家长们参考学习。

中心对称是几年级美术

中心对称是几年级美术第 1 篇

一、教材分析

(一)教材的地位与作用

数学是自然科学的基础,作为数学图形的一种特殊位置关系的中心对称,当然不会脱离自然而孤立存在,它广泛存在于我们的日常生活中。比如:中心对称应用于广告商标的设计制作,往往能以简单的色彩、线条,勾画出生动、富有创意和文化内涵的作品;旋转的物体一般都要求具有稳定性,而中心对称的设计恰恰满足了这一要求,因而在工农业生产制作转动工具时都不可避免的考虑应用中心对称的设计,如自行车、闹钟内的齿轮、轮船的轮浆等;在日常使用的生活工艺品(如:地毯、挂毯等),也不难发现中心对称的影子。中心对称给生产、生活带来很大的方便和美的感受。学习本部分内容,可以使学生充分感受到数学图形的美及其应用价值。

本节课主要学习中心对称的概念和性质。中心对称是旋转变换的特殊形式,所以已经学过的轴对称变换和旋转的概念及性质,为本节课的学习起了铺垫作用,扫清了学习障碍,本节课的知识也为即将研究的中心对称图形、关于原点对称的点的坐标以及利用平移、轴对称、旋转的组合进行图案设计奠定了坚实的基础。

(二)教学重、难点分析

重点:掌握中心对称的概念及性质

(设计的理由是:理解概念是探究性质的前提,掌握概念和性质是应用的基础。只有充分掌握了概念和性质,才能更好利用其解决问题。

难点:准确理解概念及性质,利用其解决实际问题。 二、教学目标分析

为了让每个学生都能达到教学大纲规定的基本要求,充分体现义务教育的基础性和全体性,将目标划分为以下三个层次:

知识与技能: 理解中心对称,对称中心,对称点等概念 ;掌握中心对称的性质;应用中心对称的概念及性质,解决实际问题。

过程与方法::经历探究发现中心对称性质的过程,提高观察、分析、抽象、概括等能力;体验猜想、类比、图形运动等数学思想。经历数学知识融于生活实际的学习过程,体会抽象的数学来源于生活,同时又服务于生活的真谛。

情感态度与价值观:欣赏数学的美学价值,树立学好数学的信心

三、教法与学法分析 (一)学情分析:

本节课是在学生学习了旋转的基础上,从旋转变换引入中心对称的,学生在学习旋转的过程中,已经充分体验了观察、测量、旋转画图等活动,经历了在操作活动中探索性质的过程,获得了初步的数学活动经验和体验,具备了一定的主动参与、合作交流的意识和初步的观察、分析、抽象概括能力,但是他们的抽象、概括、探索、创新能力还不够,并且在一定程度上,特别是学习平面几何的问题,学生往往依赖于生活经历等具体、直观形象,通过本节课的学习将进一步提高观察、思考、分析、归纳、探索、创新等能力。

(二)教学方法:启发探究和直观演示法

教育家布鲁纳指出“探索是数学教学的生命线”。结合本节课的教学内容,以及学生的心理特点和认知水平,主要采用启发探究和直观演示的教学方法,创设情境启导学生观察、探索、抽象、分析中心对称的概念,揭示刻画中心对称的性质。同时,利用多媒体直观演示,使得难于理解的知识形象生动,既锻炼学生的思维,又不超出学生的思维能力,这是用黑板、粉笔所不能达到的效果。

(三)学习方法:动手实践、自主探索、合作交流

新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用动手实践、自主探索,合作交流的学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

四、教学设计说明

1、在抽象概念的数学教学中,关注概念的实际背景与形成过程,使概念的教学形象化、生动化。

2、鼓励学生自主探索与合作交流。本节课我将学生分成4人一个小组,体现面向全体的原则,使每位学生都从事各种数学活动,在这些数学活动中,得到自己对数学知识的理解和有效的学习策略,学会与他人合作,力图真正落实以学生为主体的原则。

3、发展应用数学知识的意识与能力。数学学习的内容应该是现实的、有意义的、富有挑战性的。本节课我设计了一些实践活动,如课上让学生作图,以及课后的拓展性作业等,都可让学生意识到数学学习的重要性,感受到数学中的美。另外,通过活动建立自信心,提高他们对数学学习的兴趣。

五、教学过程

本节课以探究问题,形成概念——探索研究,归纳性质 ——问题探索,解释应用——巩固深化,形成技能——分层作业,巩固创新——归纳整理,整体认识环节展开教学 。

(一)探究问题,形成概念

第一步:为了使本节课导入形象、生动,让学生关注到概念的实际背景,首先利用多媒体演示2组图片的运动过程,并提出如下问题,力图在课一开始就紧紧抓住学生。

问题1:观察下面的2组图形,看一看各组中2个图形的形状、大小是否相同?怎样将一个图形旋转得到另一个图形?

很自然的从旋转变换的角度引入本节课题:中心对称。让学生体会到知识间的内在联系,中心对称实际上是旋转变换的一种特殊形式(中心对称要求旋转角必须为180°,)渗透了从一般到特殊的数学思想方法。

第二步:教师再次展示一组图片,演示旋转的过程,进一步提出问题,给学生一定的思考和讨论的空间。接下来从具体图案中抽象出两个三角形,提问:

问题2: (1)把其中一个图案绕点O旋转180°,你有什么发现?

(2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD绕点O旋转180°,你有什么发现?

引导学生分析问题,从而把以下三点逐一击破:1、两个图形;2、(选定)一个点;3、两个图形,一个图形绕着某个点旋转180°后能与另一个图形重合。

最后让学生用语言准确、简练的归纳出中心对称的概念,以及对称中心和对称点的概念。为加深学生对概念的理解,请同学们列举生活中成中心对称的例子。进行开放式教学。学生间通过研讨交流,列举的实例遍及生活的方方面面,使学生对概念的理解更加深刻、透彻。

这一环节结合课件,演示图形的运动、变化,突出动感,使枯燥、抽象的数学知识变得生动、形象,突出了运动的观点和概念的形成过程,从而有利于学生认清概念的本质。丰富了学生的感性认识,培养学生数学直觉能力,使他们感受数学就在我们身边。

(二)探索研究,归纳性质

第一步:为了让学生在理解概念的同时,探索发现中心对称的性质。教师引导学生动手操作,完成63页探究:旋转三角板,画关于点O对称的两个三角形。然后利用画好的学具,分别连接对应点AA’、BB’、CC’。提问:

(1)点O在线段AA’上吗?如果在,在什么位置? (2)△ABC与△A’B’C’有什么关系? (3)你能从中得到什么结论?

问题提出后,放手让学生自己去探究、去讨论让每一位学生亲自动手参与到知识的探索过程中,促使他们主动地获取知识,获得成功的愉悦。此时,先可让学生思考、讨论4-5分钟,然后让学生纷纷发表自己的看法。学生通过亲自动手操作和教师的直观演示,很容易得出结论。教师指导学生进行简单的推理论证,并用规范性的语言描述,从而得到两个性质:(1) 关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分; (2) 关于中心对称的两个图形是全等图形。

第二步:为了更好的深化学生对知识的理解,接下来让学生对比中心对称与轴对称的联系与区别,提出问题:中心对称与轴对称有什么区别?又有什么联系?。

问题提出后,让学生小组间进行充分的交流讨论,共同完成事先准备好的图表。老师利用投影仪进行展示,并让小组选代表进行说明。对于没有归纳完整的,其他组的同学进行补充,对于完成较好的同学,应给以及时的表扬和鼓励。

本环节向学生渗透了类比的数学思想,使学生能较好的掌握中心对称的概念及性质,并且他们通过独立思考、合作交流、大胆表述,从而达到培养其良好的学习品质和思维品质的目的。

(三)问题探索,解释应用

为加深学生对概念和性质的理解,并能简单的应用,设计了例1:求作已知点A关于点O的对称点A′。

学生大都能作出点A关于点O的对称点A′,然后请一名学生在黑板上作图,并写出作法。教师利用多媒体进行演示,规范作图步骤。待学生完成作图后,进一步提问:

1、一个点绕对称中心旋转180,得到的是一个平角,这表示什么?

2、你是如何理解“对称点所连线段都经过对称中心,而且被对称中心所平分”的? 3、怎样作出△ABC关于点O对称的△A′B′C′呢?

问题提出后,适当等待,学生纷纷发表自己的见解:确定一个三角形需要三个点,作△ABC关于点O对称的△A′B′C′时,只需要作3个点的对称点A′、B、′C′,然后连接各点,就得到了△ABC关于点O对称的△A′B′C′。

这道题是利用中心对称的性质进行作图,使学生能熟练画出两个关于某点成中心对称的图形,巩固学生的作图能力,并会简单应用中心对称的性质。其主要目的是加强对中心对称性质的理解,向学生渗透应用数学的观念。

(四)巩固深化,形成技能

为确保学生对本节知识的掌握,设计了3道反馈练习。

1、 如图,已知等边△ABC和点O,画△A′B′C′,使△A′B′C′和△ABC关于点O成中心对称。

2、画一个与已知四边形ABCD成中心对称的图形。 (1)以顶点A为对称中心; (2)以BC边的中点为对称中心。

3、如图,已知△ABC与△A′B′C′中心对称,求出它们的对称中心O。 第1、2题绝大部分学生都能独立完成,第3题是为了让学生利用性质,采取多种方法解决问题,给他们发挥自己独创性的机会。利用中心对称的性质可知:对称点所连线段都经过对称中心,而且被对称中心所平分。所以我们可以连接一对对称点,取出这条线段的中点;也可以分别连接两对对称点,两线段的交点就是对称中心。

本环节采用学生间互查的方式,增大反馈范围及信息量,加大反馈速度,以达到教师调控教学、优化教学过程的目的。思维的变式、发散、求异等优秀的思维品质,在这个开放式的训练中落到了实处。在学生练习的过程中,教师辅导并及时纠正学生存在的问题,规范学生的作图和表述能力,示范性的演示作图步骤,对不同学生分层次教学,因学施导、因材施教。

(五)分层作业,巩固创新

1、基础性作业:教材第67页第1题,68页第6题。 2、小小设计师:自己动手设计图案

3、拓 展:如图,是一个6×6的棋盘,两人各持若干张1×2的卡片轮流在棋盘上盖卡片,每人每次用一张卡片盖住相邻的两个空格谁找不出相邻的两个空格放卡片就算谁输,你用什么办法战胜对手呢?

第1、2题面向全体学生,使各个层次的学生都能有所收获。第2题是动手操作题,要求学生自己动手,利用中心对称设计图案,发挥自己的创造性思维,展开丰富的想象,使学生感到通过实践对称图形给人以和谐、美的感受,增加学习的趣味性,增加数学知识、技能的应用性。第3题是课外思考题,这里仅仅利用了正方形的中心对称性质解决实际问题,如果把本题中的正方形改成矩形、圆形或其他具有中心对称的图形的棋盘,结论依然不变。给学生留下思维发散的时间和空间,也为下节课学习中心对称图形作好铺垫。

(六)归纳整理,整体认识

1、小结:谈谈本节课的收获。

课堂小结,学生自己总结发言,不足之处由其他学生补充完善,教师应重点关注不同层次的学生对本节知识的理解、掌握程度。相互交流一下学习过程的感受、认识、想法和收获。

通过本环节,帮助学生理清知识脉络,对本节课所学的知识有一个完整、系统的认识,在培养概括能力的同时,也对课堂的教学效果进行反馈。

2、板书设计 3、对称文化

哲学家柏拉图曾说过:如果使青年们天天耳濡目染于优秀的作品,使他们不知不觉地从小就培养起对于美得爱好,并且培养其融美于心灵的习惯。

安排此环节,让学生充分领略数学中的美,积累对美得体验。培养学生热爱生活的积极人生态度。

对称是一个十分宽广的概念,这在人类早期文明中就有体现。它出现在数学教材中,也存在于日常生活中:我们的广告设计、室内装潢、绘画艺术、日常生活用品等,都有对称的踪迹。文学中的对仗也是一种对称,王维的诗句:“明月松间照,清泉石上流”既有自然意境之美,也有文字对仗工整之美。

美是无处不在的,中心对称的美是公认的,从古到今以中心对称设计的图形不胜枚举,中国古代的太极图也是中心对称美的充分体现,六角形亮晶晶的雪花,不正是大自然对中心对称的美的概括吗?

对称图形是美的,对称观念是美的,对称理论更是美的。大自然的结构是用对称语言写成的。数学和人类文明同步发展,密不可分。“对称”乃是纷繁世界文化中的一个部分。

中心对称是几年级美术第 2 篇

  一.教学目标:

  1.使学生初步感知“对称”的概念,并能识别对称图形。

  2.通过动手操作等实践活动,培养学生观察、分析、综合、抽象能力及空间想像力和创造力,同时培养学生自主探索的精神及合作能力。

  3.通过对生活实物及相应图片的欣赏,使学生感受数学与现实生活的密切关系,陶冶情操,渗透美育。

  二、教具、学具准备:

  多媒体课件、对称图形、折纸图形等

  三.教学过程:

  (一)设疑激趣、故事引入

  师:老师给同学们带来了一个小故事,大家想不想听?

  电脑演示:一个炎热的下午,一只小蜻蜓正在空中捉蚊子,这时,飞来了一只小蝴蝶,绕着小蜻蜓飞来飞去。小蜻蜓生气地说:“小蝴蝶,你绕着我飞来飞去,我都捉不成蚊子啦!”小蝴蝶却笑嘻嘻地说:“你怎么连一家人都不认识了!我是来找你玩的。”小蜻蜓奇怪地问小蝴蝶:“你是蝴蝶,我是蜻蜓,咱们怎么会是一家的?”“你不知道了吧!在图形王国里,咱们可是一家的,咱们这一家子还有好多好多成员呢。走,我带你去找一找。”小蜻蜓和小蝴蝶飞啊飞,过了田野,飞过了小河,飞到了树叶上。小蝴蝶说:“在图形王国里,树叶也和咱们一家。”

  (二)学习新知(观察、操作、验证)

  1、观察交流

  师:认真观察,想想:蝴蝶为什么说在“图形王国”里他们是一家的?它们的样子有什么共同的特点?

  (1)观察折

  师:你们通过观察,发现每个图形左边和右边的形状一样、大小一样、里面的花纹也一样。是不是这样呢?你能想什么办法来证明一下?

  (2)课件演示蝴蝶对折效果

  师:对折后,你发现了什么?

  2、出示课题

  师:对折后,发现,蝴蝶的左右两边是一样的,所以我们说,蝴蝶是对称的'。今天我们就一起走进对称的图形王国中。板书:对称

  3、折树叶(指名演示折树叶)。

  师:树叶和蝴蝶是不是一家人,也是对称图形呢?光想可不行,我们要亲自验证一下。谁来亲自折一下这片树叶(竖折——横折)

  4、指导汇报:对折后,( )的两边完全一样,所以( )是对称的。

  指名口述蜻蜓为什么是对称的

  5、验证、巩固知识:

  师:你知道什么样的图形是对称图形?竞赛游戏情景:动手折证明下面的图形是不是对称图形。(每人一套)

  师:老师这里有一个信封,里面有个小任务——读:动手操作证明下面图形是不是对称的,并说明理由。图形就藏在书中的100页。要求:先自己折,再和小伙伴说一说,既要有秩序又要快,如果成功可获得一颗智慧星!

  颁奖、鼓励、评价(贴到评比栏)

  (三)巩固练习(判断)

  1、简单判断:

  师:不动手折,你还能判断他们是不是对称图形呢?并说明理由。

  要求:不是对称——手势叉子 是对称——手势勾

  (课件出示)箭头图、钥匙图(折)、奥迪汽车标图(2线),8个图形、8个字母。

  2、快速大量判断生活中常见的图形(课件出示9个)

  (四)欣赏图片,感受对称的美

  师:其实,大自然对于对称的创造,还远不止这些,细心观察你的生活,到处都有对称的足迹。让我们看看他们藏在了哪里。

中心对称是几年级美术第 3 篇

一:学时

1课时

二:教学内容

(一)中心对称的概念、性质

(二)教学内容分析

1.中心对称是旋转角为180°的旋转,是一种特殊的旋转。学生通过本节课再次体会旋转变化,认识中心对称,进一步完善初中学习中的"对称图形"知识的认识。2.通过探索成中心对称的两个图形的对称中心与对称点之间的关系获得性质,并能运用中心对称的性质画出一个图形关于某一点的对称图形。

三、教学重难点

教学重点:中心对称的概念和性质。

教学难点:中心对称性质的探索。

四、教学目标分析

1.从旋转的角度观察2个图形之间的关系,类比旋转得出中心对称的定义,渗透从特殊到一般的数学研究方法。

2.通过操作、观察、归纳中心对称的性质,经历由具体到抽象认识问题的过程,会画一个简单几何图形关于某一点对称的图形,提高画图能力。

五、教学过程

(一).知识回顾

引导学生观察图片,并分析图形的变换关系.

(二).了解中心对称的概念

1.概念探悉

ppt中展示图1,把其中一个图案绕点O旋转180°,你有什么发现?

ppt中展示图2,线段AC,BD相交于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°,你有什么发现?

归纳:把1个图形绕着某一点旋转180°,如果它能够和另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点。

2.概念辨析

1.下列说法正确的是:

A:全等的两个图形成中心对称。

B:能够完全重合的两个图形成中心对称。

C:绕某点旋转后能重合的两个图形成中心对称。

D:绕某点旋转180°后能重合的两个图形成中心对称。

(三).探究中心对称的性质

1.性质探究

(1)中心对称的两个图形, 对称点所连线段都经过对称中心,而且被对称中心所平分;

(2)中心对称的两个图形是全等图形。

2.思维拓展

如图,已知△ABC 与△DEF 中心对称,点 A 和点 D 是对称点,画出对称中心 O.

(四).应用中心对称性质画图

(1)如左图,选择点 O 为对称中心,画出点 A 关于点 O 的对称点 A';

(2)已知线段AB和O点,画出线段AB关于点0的对称线段A'B '

(3)如右图,选择点 O 为对称中心,画出与△ABC关于点 O 对称的△A ' B ' C ' .

(4)如图,以顶点 A 为对称中心,画一个与已知四边形 ABCD 成中心对称的图形。

(五).小结

主要内容:

生总结:中心对称的概念.

怎样画一个图形关于一个点的对称图形?

(六).作业布置

P66.练习1.2

五、教学反思

在经过数小时对课本和教参的研究的基础上,完成了对本节课的教学设计,经过试讲,不断锤炼自己的教学技巧,在和同学科教师交流和对本班学生学习基础的基本把握的基础上取得较为不错的教学效果.但是仍存学生的主体地位不够突出,学习积极性仍待激发.此外,在联系环节中.题目设计最后2问衔接不够,增加了学生解答的难度.

中心对称是几年级美术第 4 篇

  [设计意图]

  生活中存在着许多神秘而美好的事物,对称就是其中的一种。孩子们每天生活在具有各种各样对称的环境中,但孩子们不能有意识地主动观察生活中对称地事物,更别说欣赏对称美了。那么,如何让孩子们主动地、有目的地观察和发现生活中对称的事物及对称美呢?

  [活动目标]

  1.初步理解对称的概念,知道对称分点对称和轴对称两种形式。

  2.初步感知生活中对称的事物和对称美,培养幼儿的观察能力和审美意识。

  3.鼓励幼儿运用多种感官感知、理解和表现对称。

  [活动准备]

  1.幼儿操作材料:各种大小、颜色、花纹不同的蝴蝶翅膀、蜜蜂翅膀、每人若干套。

  2.京剧脸谱、窗花、树叶、衣服、围巾等分类展示在教室环境中。

  3.长方形、正方形、三角形、圆形的纸,剪刀若干。

  4.春天的背景图一幅。

  [活动过程]

  一、感知对称

  1.故事引入:春天来了,花园里并满了五颜六色的花,美丽的蝴蝶、蜜蜂、蜻蜓在花丛中跳起了欢快的舞蹈。这时,飘来一片乌云,棋了大于,朋友们赶紧拍拍翅膀准备飞回家。忽然,大家一起叫了起来:“我丢了一只翅膀,飞不起来了!”(把纸制的蝴蝶、蜜蜂、蜻蜓的翅膀分散地布置在背景图上)雨越下越大,谁愿意帮助他们找到另一只翅膀呢?

  2.分组操作:把小朋友分成三组,分别为蝴蝶、蜜蜂、蜻蜓找翅膀。请个别幼儿为背景图上的蝴蝶、蜜蜂、蜻蜓的翅膀配对。

  3.幼儿展示配好对的翅膀,并说明配对的理由(从颜色、形状、花纹的角度)。

  4.教师小结:蝴蝶、蜜蜂和蜻蜓的翅膀以身体为中心线,它们左右两边的大小、颜色、形状和花纹完全相同,只是方向相反,我们把这种形式叫轴对称。

  二、找对称

  1.幼儿分成三组分别进入植物角区观察树叶和花瓣,进入生活区观察门、窗、玩具柜、衣物等物品,进入美工区观察脸谱、窗花、工艺品等美术作品,找找都有哪些物品是对称的。

  2.师生分享:大家找到什么物品是对称的?为什么?

  3.师:人体有哪些器官是对称的?动作可以对称吗?(请小朋友指出并做动作。)

  4.师:你们在生活中还见过哪些对称的事物?(飞机的翅膀,汽车的车轮,树叶的叶脉等。)

  5.师:为什么很多事物都是对称的呢?(平稳、美丽、协调。)

  三、观察和比较

  1.老师请小朋友欣赏圆形的花盘子,盘子上的图案有什么特点?(中心有一圆点,周围有许多大小、颜色相同的图案。)

  2.师:它和轴对称的`图案一样吗?(不一样。)

  3.教师小结:这种也是对称的图案,它以圆点为中心点,周围的图案在大小、形状和排列上完全相同,叫点对称。

  四、做对称

  1.每个幼儿一套不同形状的纸,一把小剪刀,请幼儿自己动手做对称的图形,看看谁做的对称最多。(教师提示幼儿可以用折、剪等不同的方法。)

  2.展示幼儿的作品,让幼儿互相分享经验。

  [活动延伸]

  在区域活动中可以开展以下活动。

  1.数学活动:

  (1)对称物品的分类。请幼儿将环境中的对称物品,按轴对称和点对称进行分类,并展示在分享区。

  (2)统计家里对称的物品。

  2.美术活动:剪窗花、画脸谱、印染、剪贴画、设计对称的服装等。

  3.创造性活动:我是小小发明家(鼓励幼儿运用对称的原理创造发明)。

  [设计评析]

  这个活动设计通过帮小昆虫找翅膀,激发幼儿主动去观察、发现、感知对称的图案,让幼儿了解生活中到处都存在着对称的事物。此设计是一个整合了语言、科学、艺术、数学等多个领域的知识与能力的综合活动。由此活动还可以引申出许多探索活动,以开阔幼儿视野,激发幼儿主动观察事物的积极性,提高幼儿自我分析能力和审美能力,培养幼儿关心自己、关心他人、关心环境的美好情感。此活动适合大班幼儿,如果在中班进行,可以把它分成两个活动来完成。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号