当前位置:首页 > 教案教学设计 > 数学教案

二次函数教学设计案例

日期:2021-12-26

这是二次函数教学设计案例,是优秀的数学教案文章,供老师家长们参考学习。

二次函数教学设计案例

二次函数教学设计案例第 1 篇

教学分析

本节课要学习的内容是二次函数的概念,是在回顾变量之间关系的基础上,通过具体实例中的变量关系的特征,感受二次函数的特征和意义,从而形成二次函数的初步认识,重点是通过分析实际问题 ,以及用关系式表示这一关系的过程,引出二次函数的概念,获得二次函数表示变量关系的体验,让学生通过分析实际问题,从学生赶兴趣的问题入手,并广泛联系学科问题,使学生好奇而愉快地感受二次函数的意义,感受数学的广泛联系和应用价值,在教学中让学生通过观察、思考、合作交流归纳出二次函数的概念,并从中体会函数的建模思想。

教学目标

1、理解二次函数的概念,掌握二次函数的一般形式

2、建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。

3、通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,又服务于生活的辨证观点。

重点、难点

重点:;对二次函数的理解

难点:抽象出实际问题中的二次函数关系

教学过程

导入新课

两个物体一轻一重,从同一高度同时下落,哪个先落地呢?实验证明在忽略空气阻力的情况下,高度相同的物体,下落时间是相同的,设h为物体从一点下落的高度。t为下落的时间二者之间是函数关系,你能列出这个函数的解析式吗?今天我们一起来学习新的函数——二次函数

推进新课

一、 走进生活

问题1、要用长为20米的铁栏杆围成一面长靠墙的举行花园。

(1)设花园的宽为x米,矩形的面积为y平方米,试写出y与x之间的函数关系式

(2)探索怎样围法使花园的面积最大?

问题2、商店将进价为8元的商品按每件10元出售,一天可售出100件,该店想通过降低售价、增加销售量的办法来提高利润,经调查发现,商品 单价每降低0.1元,销售量可增加10件。

(1)、设售价降x元,写出销售总利润y与x之间的 关系式

(2)、x的取值范围是什么?

活动:学生独立思考,完成上面两个问题,列出变量之间的关系,交流对问题的看法。

教师提问:(1)上面两个问题中y是x的函数吗?

(2)将右边按x的降幂排列,它们有什么共同特点?

概括概念

阅读教材,了解二次函数的概念。

形如y=ax2+bx+c(a、b、c为常数a≠0)的函数叫做二次函数。

应用举例(略)

课堂训练(略)

课堂小结

通过本节学习,要求大家掌握:

1、二次函数的一般形式

2、在实际问题转化为数学模型的过程中,体会学习 一元二次方程的必要性和 重要性。

布置作业

课本习题27.1 1、2、3

教学反思

本节的一个知识点就是二次函数的概念,教学中教师不能直接给出,而要学生自己在分析、揭示实际问题的数量关系并把实际问题转化为数学模型的过程中,使学生感受函数是刻画现实世界数量关系的有效模型,增加对二次函数的 感性认识,侧重点通过两个实际问题的探究引导学生自己归纳出这种新的函数,进一步感受数学在生活中的广泛应用,对于最大面积问题,可给学生留为课下探究问题,发展学生的发散思维。

二次函数教学设计案例第 2 篇

  教学内容:

  人教版九年义务教育初中第三册第108页

  教学目标:

  1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

  2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

  3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识,第五册二次函数教学设计。

  教学重点:

  二次函数的意义;会画二次函数图象。

  教学难点:

  描点法画二次函数y=ax2的图象,数与形相互联系。

  教学过程设计:

  一. 一. 创设情景、建模引入

  我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

  1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

  答:S=πR2. ①

  2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系

  答:S=L(30-L)=30L-L2 ②

  分析:①②两个关系式中S与R、L之间是否存在函数关系?

  S是否是R、L的一次函数?

  由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

  答:二次函数。

  这一节课我们将研究二次函数的有关知识。(板书课题)

  二. 二. 归纳抽象、形成概念

  一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,

  那么,y叫做x的二次函数.

  注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.

  练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

  2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

  (若学生考虑不全,教师给予补充。如: ; ; ; 的形式。)

  (通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

  由前面一次函数的`学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

  (在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

  三. 三. 尝试模仿、巩固提高

  让我们先从最简单的二次函数y=ax2入手展开研究

  1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

  请同学们画出函数y=x2的图象。

  (学生分别画图,教师巡视了解情况。)

  2. 2. 模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。

  解:一、列表:

  x

  -3

  -2

  -1

  1

  2

  3

  Y=x2

  9

  4

  1

  1

  4

  9

  二、描点、连线: 按照表格,描出各点.然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来.

  对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意,初中数学教案《第五册二次函数教学设计》。

  练习:画出函数 ; 的图象(请两个同学板演)

  X

  -3

  -2

  -1

  1

  2

  3

  Y=0.5X2

  4.5

  2

  0.5

  0.5

  02

  4.5

  Y=-X2

  -9

  -4

  -1

  -1

  -4

  -9

  画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。

  (这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)

  三. 三. 运用新知、变式探究

  画出函数 y=5x2图象

  学生在画图象的过程中遇到函数值较大的困难,不知如何是好。

二次函数教学设计案例第 3 篇

  一、教材分析

  1、教材的地位及作用

  函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。本节内容的教学,在函数的教学中有着承上启下的作用。它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。

  2、教学目标

  (1)掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。

  (2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。

  (3)让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

  3、教学的重、难点

  重点:二次函数的概念和解析式。

  难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。

  4、学情分析

  ①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。

  ②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与能力。

  ③初三学生程度参差不齐,两极分化已形成。

  二、教法学法分析

  1、教法(关键词:情境、探究、分层)

  基于本节课内容的特点和初三学生的年龄特征,我以“探究式”体验教学法和“启发式”教学法为主进行教学。让学生在开放的情境中,在教师的引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教。

  2、学法(关键词:类比、自主、合作)

  根据学生的思维特点、认知水平,遵循“教必须以学为立足点”的教育理念,让每一个学生自主参与整堂课的知识构建。在各个环节中引导学生类比迁移,对照学习。以自主探索为主,学会合作交流,在师生互动、生生互动中让每个学生动口,动手,动脑,培养学生学习的主动性和积极性,使学生由“学会”变“会学”和“乐学”。

  3、教学手段

  采用多媒体教学,直观呈现抛物线和谐、对称的美,激发学生的学习兴趣,参与热情,增大教学容量,提高教学效率。

  三、教学过程

  完整的数学学习过程是一个不断探索、发现、验证的过程,根据新课标要求,根据“以人为本,以学定教”的教学理念,结合学生实际,制订以下教学流程:

  (一)、创设情境,温故引新

  以提问的形式复习一元二次方程的一般形式,一次函数,反比例函数的定义,然后让学生欣赏一组优美的有关抛物线的图案,创设情境:

  (1)你们喜欢打篮球吗?

  (2)你们知道:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?

  从而引出课题《二次函数》,导入新课

  (二)、合作学习,探索新知

  为了更贴近生活,我先设计了两个和实际生活有关的练习题。鼓励学生积极发言,充分调动学生的主动性。然后出示课本上的两个问题,在这个环节中,我让学生在教师的引导下,先独立思考,再以小组为单位交流成果,以培养学生自主探索、合作探究的能力。四个解析式都列出来后。让学生通过观察与思考,这些解析式有什么共同特征,启发学生用自己的语言总结,从而得出二次函数的概念,并且提高了学生的语言表达能力。

  学生在学习二次函数的概念时要求学生既要知道表示二次函数的解析式中字母的意义,还要能根据给出的函数解析式判断一个函数是不是二次函数

  (三)、当堂训练,巩固提高

  由于学生层次不一,练习的设计充分考虑到学生的个体差异,满足不同层次学生的学习需求,实现有“差异的”发展。让每一个学生都感受成功的喜悦。我设计了3道练习题,其难易程度逐步提高,第一道题面对所有的学生,学生可以根据二次函数的概念直接判断,但需要强调该化简的必须化简后才可以判断。第二道题让学生逆向思维,根据条件自己写二次函数,从而加深了对二次函数概念的理解。最后一道题综合性较强,可以提高他们的综合素质。

  (四)、小结归纳,拓展转化

  让学生用自己的语言谈谈自己的收获,可以将这一节的知识条理化,进一步掌握二次函数的概念。

  (五)、布置作业,学以致用

  作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。同时,选做题具有总结性,可引导学生研究二次函数,一次函数,正比例函数的联系.

  四、评价分析

  本节课的教学从学生已有的认知基础出发,以学生自主探索、合作交流为主线,让学生经历数学知识的形成与应用过程,加深对所学知识的理解,从而突破重难点。整节课注重学生能力的培养和习惯的养成。由于学生的层次不一,我全程关注每一个学生的学习状态,进行分层施教,因势利导,随机应变,适时调整教学环节,,实现评价主体和形式的多样化,把握评价的时机与尺度,激发学生的学习兴趣,激活课堂气氛,使课堂教学达到最佳状态。

  五、教学反思

  1、本节课通过学生合作交流,自己列出不同问题中的解析式,并通过观察他们的共同特征,成功得出了二次函数的概念。

  2、本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生的语言表达能力。同时不断激发学生的探索精神,提高了学生分析和解决问题的能力。使学生有成功体验。

二次函数教学设计案例第 4 篇

  一、学习目标

  1、掌握二次函数的图象及性质;

  2、会用二次函数的图象与性质解决问题;

  学习重点:二次函数的性质;

  学习难点:二次函数的性质与图像的应用;

  二、知识点回顾:

  函数的性质

  函数函数

  图象a>0a<0

  性质

  三、典型例题:

  例1:已知n是二次函数,求m的值

  例2:

  (1)已知函数n在区间上为增函数,求a的范围;

  (2)已知函数n的单调区间是(0,1),求a;

  例3:求二次函数n在区间[0,3]上的最大值和最小值;

  变式:

  (1)已知m在[t,t+1]上的最小值为g(t),求g(t)的表达式。

  (2)已知m在区间[0,1]内有最大值-5,求a。

  四、限时训练:

  (略)

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号