日期:2021-06-12
这是整式第二课时单项式教案,是优秀的数学教案文章,供老师家长们参考学习。
教材内容:新人教版九年义务教育三年制初中数学第一册第二章第一节p52-55。
一、教材分析与学情分析
1、教材的地位及作用
“整式的加减”一章是在前一章“有理数”的基础上进行学习的,本章主要内容是单项式、多项式、整式的有关概念及整式的加减运算等,它既是对前面所学知识的深化和发展,也是今后学习一次方程、整式乘除等数学知识及其它学科知识的基础。
“整式”一节是“整式的加减”一章的起始课,整式是代数式中最基本的式子,而单项式又是整式中最基础的知识,所以本节内容是本章的基础,具有承上启下的作用。
2、教学重点与难点
重点:单项式及单项式的系数、次数的概念;
准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立
3、教学目标
认知目标:
(1)了解单项式及单项式系数、次数的概念;
(2)会准确迅速地确定一个单项式的系数和次数。
能力目标:初步培养学生观察、分析、抽象、概括等思维能力及应用意识。
情感目标:通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
4、学情分析
本节课是研究整式的开始,知识由数向式转化,比较抽象,与学生的认知基础和思维能力有一定差距,学习中会有一定困难。特别是对比较复杂的单项式,在确定其系数和次数时容易出现错误。为了突出重点,突破难点,教学中要把握以下两点:
(1)加强直观性:为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念。
(2)注重分析:在剖析单项式结构时,借助变式和反例练习,抓住概念易混处和判断易错处,强化认识。
二、教法分析
注重本章知识的整体性,按整体一局部一整体的顺序展开。先利用章头提出问题,结合所列代数式100t对本章知识进行整体介绍,然后转入本节课内容的教学。
针对初一学生学习热情高,但观察、分析、认识问题能力较弱的特点,采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,坚持启发式,使学生能顺利地掌握重点,突破难点,提高能力。教学时,采用多媒体作为教学手段,从而增大教学密度和容量;以启发谈话法为主,进行讲解及练习,达到掌握知识的目的,逐步培养学生观察、分析、抽象、概括的能力。
三、学法分析
在课堂教学中,引导学生体会知识的发生发展过程,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主体性。在充分尊重教材的前提下,融教材、练习,教学过程中,增设了由浅到深、各不相同却又紧密相关的训练题目,为学生顺利掌握单项式概念及其相关的系数、次数的概念。
四、教学过程
本课开始以章头的问题及思考题通过学生讨论分析归纳出单项式的概念,紧接着让学生分析单项式的结构从而归纳出单项式的次数和系数的概念,通过学生讨论分析总结出概念便于学生对概念的理解,重点强调了学生容易出错的几个地方,为了加深学生对概念的理解利用课本的例题和练习题让学生合作完成,同时又补充设计了相关的练习题进一步巩固概念,练习设计由浅入深、层层深入具有一定的梯度,学生完成比较容易;最后设计了效果回授,了解学生对本节课掌握情况,便于进行辅导。
五、设计思路说明
初一学生对数是比较熟悉的,而“整式的加减”一章是研究整式的`开始,是学生新旧知识结构转化的关键时期。“整式”一节又是本章的起始课,学生整式中最基本的式子单项式,在教材中处于非常重要的地位,为取得理想的教学效果,本教案设计注意了以下方面:
(1)注重教材的整体结构,重视章头问题的教学。本课是按整体一局部一整体的顺序展开的,即通过章头问题提出本章要研究的主要内容,经过每小节分段疏通,最后进行系统小结,使学生形成良好的认知结构。
(2)注重概念的引入和抽象概括过程。数学概念的产生和形成过程是人们在对实际事例观察的基础上,通过比较、分析、归纳,再进一步概括抽象出本质的过程。在进行单项式概念教学时,通过设计系列问题,引导学生积极思维,层层深入,从而抽象概括出单项式概念,有利于培养学生观察、分析抽象等思维能力。
(3)利用变式和反例练习,加强对概念的了解和应用。为教学需要,将课本练习和补充练习合理编排,形成有梯度、循序渐进的巩固练习,在学生真正了解概念的基础上,准确地迅速地确定一个单项式的系数和次数,达到教学目的要求。
六、教学反思
1、按整体一局部一整体的顺序展开。先利用章头提出问题,结合所列代数式100t对本章知识进行整体介绍,然后转入本节课内容的教学。
2、针对初一学生学习热情高,但观察、分析、认识问题能力较弱的特点,采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,坚持启发式,使学生能顺利地掌握重点,突破难点,提高能力。教学时以启发谈话法为主,进行讲解及练习,利用变式和反例练习,加强对概念的了解和应用,达到掌握知识的目的,逐步培养学生观察、分析、抽象、概括的能力。
学习目标
⒈知识与技能:理解整式运算的算理,会进行简单的整式乘法运算. ⒉过程与方法:经历探索单项式乘以单项式的.过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.
⒊情感,态度与价值观:培养学生推理能力,计算能力,协作精神. 学习重点:单项式乘法运算法则的推导与应用. 学习难点:单项式乘法运算法则的推导与应用. 学习过程: 一.自主学习: ⑴P98-99页
⑵什么是单项式?次数?系数? 二.合作探究: 1.计算4xy·3x
因为:4xy·3x=4·xy·3·x =(4·3)·(x·y)·y =12x2y. 2.仿上例计算:(1)3x2y·(-2xy3)= = .
(2)(-5a2b3)·(-4b2c)= = .
观察以上每个小题的计算式子有什么特点?由此你能简便计算下列式子 (3)3a2·2a3 = ( )×( )= .
(4)-3m2·2m4 =( )×( )= .
2332
(5)xy·4xy = ( )×( )= . (6)2a2b3·3a3= ( )×( )= . 得到法则:单项式与单项式相乘, 归纳:利用乘法结合律和交换律完成计算.
3.完成下列计算① ②
4.你能发现什么规律吗?说说看. 单项式乘以单项式的法则: 5.计算:①
②
③
④
⑤
三.随堂练习:课本P99页练习第1,2题 四.盘点提升:
一家住房的结构如图,这家房子的主人打算把卧室以外的部分都铺上地砖,至少需要多少平方米的地砖?如果某种地板砖的价格是每平方米元,则购买所需地砖至少多少元?
五.达标检测 1.填空
1
①(3a2)·(6ab)= ; ②4y· (-2xy2) = ③(-5a2b)(-3a)= ; ④(2x3)·22 = ; ⑤(-3a2b3)(-2ab3c)3= ; ⑥(-3x2y) ·(-2x)2= .
2.计算:⑴
⑵
⑶
2.下列计算中正确的是( )
⑷ ⑸
A.C.
3.计算:
A.
六.小结与反思
B. D.
所得结果是( ) B.
C.
D.以上结果都不对
教学建议
数学教案-单项式除以单项式
知识结构
重难点分析
本节的重点是单项式除以单项式的法则与应用.本章的重点是整式的乘除,作为整式除法内容中不可或缺重要组成部分,单项式除以单项式起着承上启下的作用,它既是同底数幂除法性质的延伸,又是多项式除以单项式的基础和关键,因此本节的重点是单项式除以单项式的法则与应用.
单项式除以单项式的运算是本节的难点.在单项式除以单项式的计算过程中,既要对两个单项式的系数进行运算,又要对两个单项式中同字母进行指数运算,同时对只在一个单项式中出现的字母及其指数加以注意,这对于刚刚接触整式除法的初一学生来讲,难免会出现照看不全的情况,以至于出现计算错误或漏算等问题.
教法建议
(1)单项式除以单项式运算的'实质是把单项式除以单项式的运算转化为同底数幂除法运算,因此建议在学习本课知识之前对同底数幂除法运算进行复习巩固.
(2)要熟练地进行单项式除以单项式的运算,必须掌握它的基本运算,幂的运算性质是整式乘除法的基础,只要抓住这关键的一步,才能准确地进行单项式除以单项式的运算.
(3)符号仍是运算中的重要问题,用单项式以单项式时,要注意单项式的符号和只在被除式中出现的字母及其指数.
教学设计示例
一、教学目标
1.理解和掌握单项式除以单项式的运算法则.
2.运用单项式除以单项式的运算法则,熟练、准确地进行计算.
3.通过总结法则,培养学生的抽象概括能力.
4.通过法则的应用,训练学生的综合解题能力和计算能力.
二、教法引导
尝试指导法、观察法、练习法.
三、重点难点
重点 准确、熟练地运用法则进行计算.
难点 根据乘、除的运算关系得出法则.
四、课时安排
1课时.
五、教具
投影仪或电脑、自制胶片.
六、教学步骤
(一)教学过程
1.创设情境,复习导入
前面我们学习了同底数幂的除法,请同学们回答如下问题,看哪位同学回答很快而且准确.
(l)叙述同底数幂的除法性质.
(2)计算:(1) (2) (3) (4)
学生活动:学生回答上述问题.
( ,m,n都是正整数,且m>n)
【教法说明】通过复习引起学生回忆,且巩固同底数幂的除法性质.同时为本节的学习打下基础,注意要指出零指数幂的意义.
2.指出问题,引出新知
思考问题:( ) (学生回答结果)
这个问题就是让我们去求一个单项式,使它与 相乘,积为 ,这个过程能列出一个算式吗?
由一个学生回答,教师板书.
这就是我们这节课要学习的单项式除以单项式运算.
师生活动:因为
所以 (在上述板书过程中填上所缺的项)
由 得到 ,系数4和3同底数幂 、a及 、 分别是怎样计算的?(一个学生回答)那么由 得到 又是怎样计算的呢?
结合引例,教师引导学生回答,并对学生的回答进行肯定、否定、纠正,同时板书.
一般地,单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
如何运用呢?比如计算:
学生活动:在教师引导下,根据法则回答问题.(教师板书)
【教法说明】教师根据乘、除法的运算关系,步步深入,引导学生总结得出单项式除以单项式的运算法则,教师给出 ,紧扣计算法则,在师生互动活动中,要充分发挥教师的主导作用和学生的主体作用,调动学生的思维.
3.尝试计算,熟悉法则
计算:(1) (2)
(3) (4)
学生活动:学生自己尝试完成计算题,同桌互相帮助,然后与课本146页例题解答过程相对照,看自己的解答有无问题,若有问题进行改正.
【教法说明】教师结合 的演算,使学生对法则的运用有了初步认识;例题由学生尝试完成,可以训练学生运用知识的能力,在解题的过程中,让学生自己去体会法则、掌握法则、印象更为深刻;也让学生自己发现解题中存在的问题,有助于培养学生良好的思维习惯和主动参与学习的习惯.
4.强化学习,掌握法则
练习一
下列计算是否正确?如果不正确,指出错误原因并加以改正
(1) (2)
(3) (4)
学生活动:学生细心观察思考后,分别找4个学生回答,其他学生对他们的回答进行肯定、否定或纠正.
【教法说明】(1)、(2)、(3)小题中的错误,均是学生在计算时常出现的错误,通过这组题的练习,可以使学生进一步巩固、理解法则对可能出现的计算错误引起注意,从而培养学生解题细心的习惯;除此之外,还可以培养学生辨别是非的能力.
练习二
计算
(1) (2) (3)
(4) (5)
学生活动:5个学生板演,其他学生在练习本上完成,然后讲评.
【教法说明】此题目的是使学生熟练运用法则进行计算,要求写清计算步骤,讲评时重复法则,并纠正学生计算中出现的错误,教师提醒学生计算时要耐心细致.
练习三
计算:
(1) (2) (3)
(4) (5)
学生活动:学生在练习本上完成,5名学生板演,然后学生自评.
【教法说明】通过练习二,学生对法则已基本能够熟练运用,对一些容易出现的错误,也得到了纠正.适时给出练习三,可以使学生对知识的掌握得到强化,学生自评可以调动学生主动参与学习的积极性,培养他们的主人翁意识.
练习四
把图中左圈里的每一个代数式分别除以 ,然后把商式写在右图里.
学生活动:学生理解题意后,分别由3个学生说出答案,其他学生给予判断.
【教法说明】此题目的是使学生在进一步运用法则进行熟练计算的同时,渗透集合与对应的思想,但教师不必说明.
(二)小结
由学生完成本节课的归纳与总结,教师给予引导或补充.
【教法说明】课堂小结由学生来完成,这样既可以训练学生的归纳总结能力及口头表达能力,又可使学生对本节课的内容留下深刻的印象.
七、布置作业
(一)必做题:P148 A组1.(3)(6),2.
数学教案-单项式除以单项式
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号