当前位置:首页 > 教案教学设计 > 数学教案

因式分解教学反思

日期:2022-01-15

这是因式分解教学反思,是优秀的数学教案文章,供老师家长们参考学习。

因式分解教学反思

因式分解教学反思第 1 篇

一、教学目标

【知识与技能】

了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。

【过程与方法】

通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。

【情感态度价值观】

在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。

二、教学重难点

【教学重点】

运用平方差公式分解因式。

【教学难点】

灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。

三、教学过程

(一)引入新课

我们学习了因式分解的定义,还学习了提公因式法分解因式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?

大家先观察下列式子:

(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=

他们有什么共同的特点?你可以得出什么结论?

(二)探索新知

学生独立思考或者与同桌讨论。

引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。

提问1:能否用语言以及数学公式将其特征表述出来?

因式分解教学反思第 2 篇

  初中因式分解教案

  一、案例背景

  现代教育理论认为,教师为主导,学生为主体,教师应当充分调动学生的学习用心性,使之主动地探索、研究,让学生都参与到课堂活动中,透过学生自我感受,培养学生观察、分析、归纳的潜力,逐步提高自学潜力,独立思考的潜力,发现问题和解决问题的潜力,逐渐养成良好的个性品质。

  因式分解是代数式的一种重要恒等变形。它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用。

  二、案例分析

  教学过程设计

  (一)『情境引入』

  情境一:如何计算375×2。8+375×4。9+375×2。3你是怎样想的

  问题:为什么375×2。8+375×4。9+375×2。3能够写成375×(2。4+4。9+2。3)依据是什么

  【评析】:(1)、复习旧知,加深记忆,同时为下面的学习作铺垫。

  (2)、学生对这样的问题有兴趣,能迅速找出一些不同的速算方法,很快想出乘法分配律的逆向变形,设置这样的情境,由数推广到式,效率较高。还为新课资料的学习创设了良好的情绪和氛围。

  情境二:分析比较

  把单项式乘多项式的乘法法则

  a(b+c+d)=ab+ac+ad①

  反过来,就得到

  ab+ac+ad=a(b+c+d)②

  思考(1)你是怎样认识①式和②式之间的关系的

  (2)②式左边的多项式的每一项有相同的因式吗你能说出这个因式吗

  【评析】:(1)、探索因式分解的方法,事实上是对整式乘法的再认识,因此,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程。

  (2)、本题注重培养学生观察、分析、归纳的潜力,并向学生渗透比较、类比的数学思想方法。

  (二)『探究因式分解』

  1、认识公因式

  (1)、【概念1】:多项式ab+ac+ad的各项ab、ac、ad都内含相同的因式a,称为多项式各项的公因式。

  (2)、议一议

  下列多项式的各项是否有公因式如果有,试找出公因式。

  ①多项式a2b+ab2的公因式是ab,……公因式是字母;

  ②多项式3x2—3y的公因式是3,……公因式是数字系数;

  ③多项式3x2—6x3的公因式是3x2,……公因式是数学系数与字母的乘积。

  分析并猜想

  确定一个多项式的公因式时,要从和两方面,分别进行思考。

  ①如何确定公因式的数字系数

  ②如何确定公因式的字母字母的指数怎样定

  练一练:写出下列多项式各项的公因式

  (1)8x—16(2)2a2b—ab2

  (3)4x2—2x(4)6m2n—4m3n3—2mn

  【评析】:(1)、教师不要直接给出找多项式公因式的方法和解释,而是鼓励学生自主探索,根据自己的体验来积累找公因式的方法和经验,并能透过相互间的交流来纠正解题中的常见错误。

  (2)、对公因式的理解是因式分解的基础,所以在解决这个问题时要注意配以练习,个性是多次方及系数的公因式,要让学生注意。

  (3)、找公因式的一般步骤可归纳为:一看系数二看字母三看指数。

  2、认识因式分解

  【概念2】:把一个多项式化成几个整式积的形式的叫做把这个多项式因式分解。

  (课本)P71练一练第1题

  (1)、下列各式由左边到右边的变形,哪些是因式分解,哪些不是

  ①。ab+ac+d=a(b+c)+d

  ②。a2—1=(a+1)(a—1)

  ③。(a+1)(a—1)=a2—1

  (2)、你认为提公因式法分解因式和单项式乘多项式这两种变形是怎样的关系从中你得到什么启发

  【评析】:(1)、本题主要是为了加深学生对因式分解概念的理解,使学生清楚因式分解的结果应是整式乘积的形式。

  (2)、教师安排本题意图就是引导学生进行分析讨论,鼓励学生勤于思考,各抒己见,培养学生的逻辑思维潜力和表达、交流潜力。让学生在主动学习中掌握了因式分解是整式乘法的互逆的过程,以及理解利用它们之间的关系进行因式分解的这种思想,从而降低了本节课的难点。

  (三)『例题研究』

  例1:把下列各式分解因式

  (1)6a3b—9a2b2c(2)—2m3+8m2—12m

  解:(1)6a3b—9a2b2c

  =3a2b·2a—3a2b·3bc(找公因式,把各项分成公因式与一个单项式的乘积的形式)

  =3a2b(2a—3bc)(提取公因式)

  (2)—2m3+8m2—12m

  =—(2m·m2—2m·4m+2m·6)(首项符号为负,先将多项式放在带负号的括号内,注意放入括号中各项符号的变化。)

  =—2m(m2—4m+6)(提取公因式)

  【评析】:(1)、因式分解的概念和好处需要学生多层次的感受,教师不要期望一次透彻的讲解和分析就能让学生完全掌握。这时先让学生进行初步的感受,再透过不同形式的练习增强对概念的理解例。

  (2)、教师在讲解例题时,应鼓励学生自己动手找公因式,让学生透过动手动脑、实际操作,教师可在下面收集错误,再加以点评,加深对因式分解方法的理解。

  (3)、教学中教师不能简单地要求学生记忆运算法则,更要重视学生对算理的理解,让学生尝试说出每一步运算的道理,有意识地培养学生有条理地思考和语言表达潜力。

  本题的易错点:

  (1)、漏项:提公因式后括号中的项数应与原多项式的项数一样,这样可检查是否漏项。

  (2)、符号:由于添括号法则在上学期没有涉及,所以有必要在此处强调,添括号法则:括号前面是“+”号,括到括号里的各项都不变号;括号前面是“—”号,括到括号里的各项都要变号。

  (四)『巩固练习』

  练一练:辨别下列因式分解的正误

  (1)8a3b2—12ab4+4ab=4ab(2a2b—3b3)

  (2)4x2—12x3=2x2(2—6x)

  (3)a3—a2=a2(a—1)=a3—a2

  解(1)错误,分解因式后,括号内的多项式的项数漏掉了一项。

  (2)错误,分解因式后,括号内的多项式中仍有公因式。

  (3)错误,分解因式后,又回到到了整式的乘法。

  【评析】:(1)、这些多是学生易错的,本题设置的目的是让学生运用例1的成果准确辨别因式分解中的常见错误,对因式分解的认识更加清晰。本例仍采用小组讨论、交流的方式,让学生都参与到课堂活动中。

  (2)、当多项式的某一项恰好是公因式时,这一项应看成它与1的乘积,提公因式后剩下的应是1。1作为项的系数通常可省略,但如果单独成一项时,它在因式分解时不能漏项。

  (3)、进行多项式分解因式时,务必把每一个因式都分解到不能分解为止。

  (4)、教师安排这一过程,完全放手让学生自主进行,充分暴露学生的思维过程,展现学生生动活泼、主动求知和富有的个性,使学生真正成为学习的主体,使因式分解与整式的乘法的关系得到真正强化,也分散了本节课的难点。

  (五)『想一想』:

  如何把多项式3a(x+y)—2b(x+y)分解因式

  解:3a(x+y)—2b(x+y)=(x+y)(3a—2b)

  评析:公因式(x+y)是多项式,属较高要求,当多项式中有相同的整体(多项式)时,不要把它拆开,提取公因式时把它整体提出来,有时还需要做适当变形,如:(2—a)=—(a—2),教学时可初步渗透换元思想,将换元思想引入因式分解,可使问题化繁为简。

  【概念3】把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。

  初中因式分解教学反思

  1、本节课根据学生的知识结构,采用的教学流程是:提出问题—实际操作—归纳方法—课堂练习—课堂小结—布置作业六部分,这一流程体现了知识发生、构成和发展的过程,让学生进一步发展观察、归纳、类比、概括、逆向思考等潜力,发展有条理思考及语言表达潜力;

  2、分解因式是一种变形,变形的结果应是整式的积的形式,分解因式与整式的乘法是互逆关系,即把分解因式看作是一个变形的过程,那么整式乘法又是分解因式的逆过程,这种互逆关系一方面体现二者之间的密切联系,另一方面又说明了二者之间的根本区别。探索因式分解的方法,事实上是对整式乘法的再认识,因此,在教学过程中,教师要借助学生已有的整式乘法运算的基础,给学生带给丰富搞笑的问题情境,并给他们留下充分探索与交流的时间和空间,让他们经历从整式乘法到因式分解的这种互逆变形的过程;

  3、在提公因式方面,学生对公因式的认识不足,对提公因式的要求不清楚,造成了学生在做分解因式时出现了以下错误:

  (1)公因式找错;

  (2)公因式找不完整(如:漏掉公因式的系数(或系数不是取各项系数的最大公约数)、公因式中内含多项式时,漏掉系数或字母因数),导致因式分解不彻底;

  4、由于在七年级上册教材中没有涉及添括号法则,所以学生在分解第一项系数是负数的多项式时,出现了很多符号错误;

  因式分解是一个重点,也是一个难点,以上存在问题在以后的教学中有待进一步加强。

因式分解教学反思第 3 篇

教学设计及课堂实施情况的分析:

本课的教学目的是:

1。能够正确理解因式分解的概念,知道它与整式乘法的区别和联系。

2。通过学生的自主探索,发现因式分解的基本方法,会用提公因式法把多项式进行因式分解。

教学重点是:因式分解的概念,用提公因式分解因式。

教学难点是:正确找出多项式中的公因式和公因式提出后另一个因式的确定。

教学过程为:在引入"因式分解"这一概念时是通过复习小学知识"因数分解",接着让学生类比得到的。此处的设计意图是类比方法的渗透。因式分解与整式乘法的区别则通过把等号两边的式子互相转换位置而直观得出。在学习提取公因式时首先让学生通过小组讨论得到公因式的结构组成,并且引导学生得出提取公因式法这一因式分解的方法其实就是将被分解的多项式除以公因式得到余下的因式的计算过程。此处的意图是充分让学生自主探索,合作学习。而实际上,学生的学习情绪还是调动起来了的。通过小组讨论学习,尽管语言的组织方面不够完善,但是均可以得出结论。接着通过例题讲解,最后让学生自主完成练习题,老师当堂批改当堂讲评。

教学过程中,能做到及时向学生反馈信息。能走下讲台,做到课内批改大部分学生的练习,且对于个别学习本课新知识有困难的学生能单独予以辅导。在批改过程中,发现大部分学生都做错及存在的问题能充分利用多媒体向学生展示,或是马上板演为全体学生讲解清楚。

上完本课,教学目的能够完成,教学重难点也能逐个突破。

二、不足之处:

本课的设计,过多强调学生用高度抽象的语言来描述概念。

教学设计引入的1过程可以简化。对于因式分解的概念,学生可通过自己的一系列练习实践去体会到此概念的特点,故不需在开头引入的地方多加铺垫,浪费了一定的时间。在设计的时候脚手架的搭建层次也不够分明。

因式分解教学反思第 4 篇

单位

本溪市第十九中学

学科

数学

课题

2.1分解因式

姓名

李丹

课时

1课时

教学方法

演示法、观察法、讨论法、探究法等

教学目标

1、 经历从分解因数到分解因式的类比过程,了解分解因式的意义,以及它与整式乘法的关系。利用分解因式进行简便运算。

2、 感受整式乘法与分解因式之间的互逆关系,发展学生有条理的思考与语言表达能力。

3、 在活动中培养与同伴交流及团结协作的精神,以及独立思考的能力。

教学重点

理解分解因式的意义,准确的辨析整式乘法与分解因式这两个变形。利用因式分解进行简便运算。

教学难点

对分解因式与整式乘法关系的理解。

教学过程

教学内容与教师活动

学生活动

设计意图

创设情境

引入课题

展示图片:对开的两辆列车,师利用歌词引入课题并板书。

生观察图片

创设情境有利与激发学生学习的兴趣。

新知探索

(一)展示课件:三件礼物

1、630能被哪些数整除?

2、当a=102 b=98时求a2-b2的值?

3、当a= b= 时求a2 +ab的值?

引导学生观察,探索把原式的和差化成了几个整式的积的形式

师板书分解因式概念

(二)理解概念:(课件展示)判断下列各题是不是因式分解,为什么?

(三)尝试把下列多项式分解因式 (1)3a-3=3( );

(2) a2 -2a-3=(a+1)( )

师适当点拨

(四)思考下列因式分解是否正确

(1) x2y-xy2=xy(x-y)

(2) 2x2-1=(2x+1)(2x-1)

师板书分解因式与整式乘法的关系

练习 连一连(课件演示)

生独立思考,并抢答。感受解决这个问题的关键是分解因数。

类比分解因数利用平方差的逆用,简便运算。

体会某种运算中结果需要化为积有利于简便运算。

学生观察总结得到因式分解的概念,并由学生总结分解因式的特点。

生抢答并说明理由。

生尝试分解

生独立完成,并通过以上练习得到分解因式与整式乘法的关系。

生独立完成,并能正确区分两种变形

通过课件展示的三个小礼物,使学生经历从分解因数到分解因式的类比过程,了解学习分解因式的必要性。

培养学生发现问题,解决问题的能力。

锻炼学生的语言表达能力和总结概括能

让学生进一步理解分解因式的定义

通过学生尝试分解因式以及下面的练习使学生通过整式乘法的运算来检验因式分解的正确性从而得到了二者之间的关系。同时为以后的学习做了铺垫

巩固新知及应用新知解决问题

感知应用

(一)变式练习

(1) x2+mx+10可以分解为

(x+2)(x+5)则m=____;

(2) x2-nx-m=(x-3)(x-2)则m=___,n=____;

(3) x2+mx-12因式分解的结果是(x+3)(x+b)则b=__,m=__-

二)欲与计算器试比高

(1)1012-992(2)872+87*13=

(3)24+242=(4)7.52-0.52=

(5)a=99,b=1求a2+2ab+b2=(三)拓展练习

(四)附加题

生分组观察,讨论,思考并派代表会答。

生口算,并抢答

学生独立完成

学生分组讨论,派代表到黑板前演示

利用整式乘法与因式分解互逆的恒等变形解决问题。

给不同学生参与的机会,激发学生的学习兴趣和探究欲望,使每名学生的知识体系得以扩充。

情境激疑通过几何图形的面积问题进一步加深理解因式分解和整式乘法是互逆的恒等变形。

课堂小结

通过本节学习,谈收获与体会

学生总结交流,教师补充

使学生对整节知识有了一个全面的了解及深化锻炼了学生的语言表达能力和归纳总结能力。

布置作业

必做:习题2.1

选做:见课件

生独立完成

分层次面向全体学生,巩固复习,引导预习。

板书设计

§2.1分解因式

一.创设情境,引入课题 二.新知探索

三.感知应用 四.课堂小结

五.布置作业

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号