日期:2022-01-18
这是圆的认识一优秀教学设计,是优秀的数学教案文章,供老师家长们参考学习。
教学目标
1.使学生认识圆及各部分的名称,会用圆规画圆,理解并掌握圆心、半径与圆的位置和圆的大小的关系,掌握半径与直径的特征及关系。
2.培养学生的动手操作能力和观察、分析、综合、概括的能力及其空间观念的建立。
3.渗透辩证唯物主义的启蒙教育。
教学重点和难点
教学重点:认识圆,掌握圆的特征,了解画圆的步骤和掌握画圆的方法。
教学难点:了解画圆的步骤和掌握画圆的方法。
教学过程设计
(一)复习导入
1.请你说出下面各图形的名称。
这些都是我们学过的平面图形,它们都是由什么围成的?(都是由线段围成的。)
2.在日常生活中常见的一些物体(出示投影片),如硬币的面、有些钟表的面及有些桌子的面都是什么形的?(圆形)(用抽拉复合投题片抽去实物图形,剩下圆形。)
3.(电脑屏幕演示)一根绳子,一端固定,另一端拴一个小球,甩一周,小球留下的轨迹就是一个什么图形?(圆形)谁来指指屏幕上哪儿是圆形?
教师介绍圆上、圆内、圆外。
4.圆和学过的图形有什么相同点和不同点?(相同点:都是平面图形;不同点:圆是曲线围成的图形。)谁能说一说你周围的物体上哪里有圆?
今天,我们就来学习有关圆的知识。(板书课题:圆的认识。)
(二)学习新课
1.借助工具画圆,进一步认识圆是由一条封闭曲线围成的。
(1)用你准备的圆形物体画一个圆。
(2)说说你是怎样画的?(沿着它的周边画一圈。)请你用剪子把这个圆剪下来
2.认识圆各部分的名称及其特征。
(1)认识圆心。
①把你剪的圆对折,打开,再换个方向对折,再打开,反复折几次。折过若干次后,可以发现什么?小组讨论讨论。
②这些折痕相交于圆中心的一点,我们把圆中心的这一点叫做圆心。圆心一般用字母O表示。画圆时固定的一点,就叫做圆心。
(2)认识半径及半径的特征。
①请学生在圆上找一点。学生动手:以圆心和圆上找的一点为端点画一条线段。
师介绍:从圆心到圆上任意一点的线段叫半径,用r表示。这是一条什么样的线段?半径必须具备哪些特征?(半径是一条线段,两个端点分别在圆心和圆上任意一点。)
②请学生在规定的时间内画半径,看谁画得多。还能画吗?这说明了什么?(半径有无数条。)
③用尺子量一量这些半径,你发现了什么?(同圆或等圆半径相等。)
(3)认识直径及其特征。
①我们把圆对折时,每条折痕之间有什么共同的特点?小组讨论讨论。(折痕通过圆心,两端都在圆上。)
②我们就把这样的通过圆心且两端都在圆上的线段叫做直径。直径用字母d表示。
追问:直径必须具备哪些条件?
③想一想:直径有多少条?你是怎样发现的?让学生画出几条直径,并且量一量,你又发现了什么?(直径有无数条,同圆或等圆的直径相等。)
(4)半径与直径的关系。
①通过刚才的画一画,量一量。你除了发现半径、直径的特征外,还发现了什么?(直径等于半径的2倍,或半径等于直径的一半。)
②用字母表示上述关系:
③老师拿出一个直径是40厘米的圆,这个圆大不大?它的半径与你手中的那个圆的半径相等吗?它的半径是你手中那个圆的直径的一半吗?说明了什么?(圆的特征及直径、半径的关系必须在同一个圆或相等的圆中才存在。)
(5)练习。
(1)课本第108页的做一做:
用彩色笔标出下面各圆的半径和直径。
说明理由。
(2)课本第109页第3题:填表
(3)课本第109页第5题:
①指出下边圆里的几条线段中哪一条是直径。
②量一量这几条线段的长度,可以知道,两端都在圆上的线段,直径是最( )的一条。
③根据这个道理,我们就可以用下面的方法测量没有标出圆心的圆的直径。
出示投影片。
3.学会用圆规画圆。
(1)教师拿出一个圆规,提问:谁认识这个工具?(圆规)你知道它是干什么用的吗?
(2)学生初步尝试画圆,请你用手中的圆规试着在纸上画一个圆,你是分几步画的?可以互相讨论,互相帮助。
(3)谁来给大家说说你是怎么画的?老师按照你说的在黑板上画一个圆。
一边画,一边归纳画圆的三个步骤:
① 把圆规的两脚分开,定好两脚间的距离。圆规两脚间的距离就是什么?(半径)
② 把有针尖的一只脚固定在一点上。
提问:画圆时固定的一点就是什么?(圆心)
③ 把装有铅笔尖的一只脚旋转一周,就可以画出一个圆。
提醒学生画圆时应注意以下两点:
① 重心应放在有针尖的一脚;
② 两脚间的距离不准变。
(4)请你按照上面的步骤,在作业本上再画一个圆。
(5)用圆规画出半径为3厘米的一个圆,并用字母O,r,d分别标出它的圆心、半径和直径。
(6)看看你在纸上画的这几个圆有什么不同之处?(这几个圆的位置不同,大小也不相同。)
想一想:圆的位置是由谁决定的?圆的大小又与谁有关系?(圆的位置是由圆心决定的,圆的大小是由圆的半径决定的。)
板书:圆心决定圆的位置,半径决定圆的大小。
小结:画圆时应先确定圆心,然后按照指定的半径长度为半径来画圆。圆的大小取决于半径的长短,与圆心的位置无关。
(三)课堂总结
通过今天的学习,你都学到了哪些知识?
这些知识可以帮助我们解决许许多多实际问题:
日常生活中,为什么把车轮都要做成圆的?车轴应装在哪里?这是为什么?(圆心到圆上任意一点的距离都相等,车轴应放在圆心的位置,这样,车轮滚动时,车轴才能保持与地面一样的距离,从而使车辆行驶平稳。)
(四)布置作业
教学目的:
1.使学生认识圆,知道各部分的名称。
2.掌握圆的特征,理解直径和半径的相互关系。
3.初步学会用圆规画圆。
4.通过分组学习,动手操作,主动探索等活动培养学生的创新意识,经及抽象。概括等能力,进一步发展学生的空间观念。
教具准备:线绳、图钉、铅笔头、圆规、实物投影仪、计算机软件。
教学过程:
一、复习导入
我想问一下,大家喜欢动画片吗7(喜欢)今天我也给大家带来一段动画片,想看吗?(想)请大家屏幕,(出示课件)这四个小动物在举行自行车比赛,最后结果怎样呢?请往下看,现在比赛还没有结束,你能猜一下,最后谁能得第一?(小狗),为什么呢?(因为小狗的车轮是圆的)。那小白兔的车轮也是圆的,那你为什么不说它得第一呢2(因为小白兔的车轮的车轴没在中间)那为什么车轮做成圆的,车轴装在中间,跑起来就又快又稳呢?学完这节课,你就会明白的。
今天我们就来学习圆的认识。
板书课题:"圆的认识"。
二、新课教学
1.实物举例。
一年级的时候,咱们已经初小认识过圆了,谁来说一说,除了车轮是圆的以外,在我们周围的物体上哪里还有圆?(学生举例,可能举以下实物。)
①硬币的边是圆的;②圆桌的边也是圆的;③有些钟表的外形象也是圆的;④咱们研究的都是平面图形,而足球是一个球体,它不是一个平面图形,我们以后再研究。刚才咱们举出这么多例子,那到底什么是我们今天要研究的圆呢?请大家观察屏幕,(出示课件)如果我们沿着这些物体的外沿画下来,就得到了一个圆,大家看明白了吗?(明白了。)
圆和咱们原来学过的三角形。四边形相比有什么不同?
三角形和四边形都是由什么围成的?(线段)我们就把它们叫做平面上的直线图形。而圆是什么围成的。(曲线)所以,我们就把圆叫做平面上的曲线图形。
2.分组画圆,初步感知圆的特征。
对于三角形和四边形的特征,咱们前面已经研究过了。
而作为由曲线围成的平面图形--圆来说也有自己的特征,下我们就一起来研究一下。
为了便于咱们研究,咱们先来画一个圆,大家会画圆吗?(会)
谁能到黑板前快速画一个圆。(评价。你能敢上来画一个圆,已经很好了,请回。)
看来只用一只粉笔,是不太容易把圆画好的,在想画好,咱们就得借助工具,下面老师就给你一些工具,打开信封,看里面有什么?(图钉、线绳、铅笔头)注意听清我的要求:一会咱比一比,哪一组的同学最聪明,能用这些工具在最短的时间里在作业纸上画出一个圆。开始。(学生画圆,教师指导。)
我们一起看这几个组同学画的,大家评一评,哪个组的同学画得最好?(由不好到好,依次展出学生画出的圆。)
大家说,哪一组的同学画得最好?(第X组)
下面咱就请第X组的同学给大家介绍一下他们是怎样做的?怎么画得这么圆?(学生介绍。)
他们想的方法好不好?(好。)你再给大家说一说应应注意些什么就能把圆画好。(①固定好图钉不能动;②线绳随时拉紧。)
大家明白了吗?(明白了)其他组的同学说一下,你们是怎样画的?
(①系绳的方法不同;②不转动绳,转纸。)
我这里也有三样工具,下面我就用刚才那位同学的方法,也画一个圆。
(师画圆。)
怎么样,我画的圆好不好?
我想只要注意两点就可以把圆画好。一是图钉固定的这一点不能动;二是线绳必须始终拉紧。
3.认识圆各部分的名称。
图钉固定的这一点我们就把它叫做圆心,也就是圆中心的一点,圆心一般用字母O表示。(板书:圆心O)
我们还知道画圆时,线绳必须得拉紧,也就是粉笔无论旋转到什么位置,线绳的长度变不变?(不变。)
由此,可以看出:从圆心到圆上任意一点的距离是相等的。
现在我沿着线绳用尺子画出一条线段,也就是连接圆心和圆上任意一点的一条线段。像这样的线段,我们就把它叫做半径,一般用字母r表示,谁来说一下什么叫半径?(学生回答。)
教学内容:九年义务教育人教版六年制小学数学第十一册第106---109页,圆的认识和圆的画法,完成练习二十五。
教学目标:
1.进一步认识圆,知道并理解圆的各部分名称;了解圆的特征,理解直径和半径的关系;学习用圆规画圆,初步能按要求画圆。
2.在数学活动中让学生经历知识再发现、再创造的过程,完成知识的意义赋予,从中培养探究意识、发现能力和解决简单实际问题的能力。
3.体验圆的美,享受成功的喜悦。
教学具准备:圆规、剪刀、水彩笔、白纸、直尺、一副三角尺、绳子、羊的头饰、一元硬币。
教学过程
一、揭题
1. 直线图形
师:(出示三角形、长方形、正方形、平行四边形、梯形的平面图)三角形、四边形都是由线段围成的平面图形,线段有什么特点?
生:线段有两个端点,是直的,可以度量。
师:所以我们称三角形、四边形是平面上的直线图形。(板书:直线图形)
2.曲线图形
师:(出示圆的平面图)这是我们学过的… …
生:齐说“圆”(板书:圆)
师:相对于线段围成的直线图形,圆是由曲线围成的,所以我们称圆是平面上的一种曲线图形。(板书:曲线图形)
3.引入圆的特征讨论
师:想一想:你周围的物体上哪里有圆?
生:(举例略)
师:同学们一年级时就初步认识过圆,现在都六年级了,你现在知道多少有关圆的知识?
生①:圆是一种优美的图形,建筑设计中应用广泛,如:圆形花坛,圆形装饰图案。生②:圆形便于滚动,所以车轮都是圆的。
生③:一张白纸经折叠后可以剪出一个近似的圆。
生④:(举起自己的圆规)这是圆规,用它可以画圆。
师:车轮为什么是圆的?为什么用圆规可以画出圆来呢?这就需要认识圆有什么特征,下面就来学习“圆的认识”。(板书:圆的认识)
二、新课
1.圆的画法
(1)自由画
师:拿出自己的圆规,在白纸上画一个圆。(师板书:画圆)
生:独立画
师:谁能说说你是怎样画出来的?
生:… …(用自己的话描述)
师:谁能用老师的教具圆规上黑板上画圆?(让两名同学上黑板画,提醒其余同学仔细观察他们是怎样画的?)
反馈①:一只手摁住圆规固定的脚,另一只手使圆规的另一只脚旋转,顺利画出圆。
反馈②:教具圆规不好使唤,想固定的那只脚不停移动,用力过猛又使圆规两脚的距离发生变化,无法画出圆。
师:为什么这位同学用圆规能轻巧地画出圆,而另一位同学却画不出圆呢?
(点拨总结出画圆的步骤:“分开”、“固定”、“旋转”。分别板书)
2.认识圆心
师:(以黑板上学生画的圆为例)用圆规画圆时针尖固定的这一点(用彩色粉笔点出)叫圆心(板书“圆心”)一般用字母O来表示(标出:O)。请同学们在自己画的圆上点出圆心,标出字母O。
生:独立完成。
3.认识半径
师:举起你们刚才画的圆,互相看一下,都一样大吗?
生:不一样大。
师:为什么大的大,小的小,与什么有关?
生:与圆规两脚分开的大小有关。
师:你们的意思是圆规两脚间的距离长时,画出的圆大,两脚间的距离短时,画出的圆就小。请在你的圆上画出一条表示两脚间距离的线段。
生:独立画。
师:(以黑板上学生画的圆为例)请同学们仔细看,圆规的一只脚固定在圆心O,当另一只脚旋转到A点时,圆规两脚间的距离是OA(画出线段OA);当另一只脚旋转到B点时,两脚间的距离是OB(再画出线段OB)
问:线段OA和OB相等吗?
生:相等。
师:你是凭观察得出的,那怎样验证呢?
生:测量。
师:指名上黑板测量OA与OB的长并报告测量结果。
生:确实一样长。
师:在这个圆的曲线上,像A、B这样的.点可以找出多少个?
生:无数个。
师:表示两脚间的距离的线段可以画多少条?设想一下它们的长度如何?
生:无数条且长度都相等(板书)
师:我们刚才研究的画圆时圆规两脚间的距离就叫做圆的半径(板书:半径)一般用字母r来表示。给你们刚才画的半径标上r。
师;半径这条线段的一个端点在哪里,另一个呢?
生:一个端点在圆心,另一个端点在圆的曲线上。(板书:圆心 圆的曲线上)
师:那什么叫半径呢?
生:用自己的话说(师完成半径定义的板书)
师:同一个圆里,半径有什么特点?
生:无数条且长度都相等。
4.认识直径
师:把自己画的圆剪下来
生:独立剪
师:示范对折,打开,出现一条折痕,用食指摸折痕;换个方向再重复一次。
生:在教师示范下同步进行。
师:像这样再重复折几次
生:独立对折、打开、摸折痕。
师:你折了好多次,可以发现什么?
反馈①:每折一次出现一条折痕。
追问:你折了几次,出现了几条折痕,与他不一样的呢?像这样的折痕在你的圆里能再折出来吗?
反馈②:对折后圆的两边能完全重合,圆被平均折成两份。
反馈③:每折一次出现一条折痕,每条折痕都是圆上的线段。
反馈④:这些折痕相交于圆心。
追问:你对折出几条折痕,谁折出的折痕比他多,他说的结论正确吗?在你的圆里,这样的折痕可以折出多少条?这个结论正确吗?
反馈⑤:这些折痕都一样长。
追问:怎样验证?
生:测量
师:量出你圆里每条折痕的长度
生:汇报结果。(指导学生说:“在我的圆里,… …”)
师:刚才说了这样的折痕有无数条,所以可以怎样下结论?
生:同一个圆里,所有的折痕长度都相等。
师:谁能给“折痕”起个名字?
生:直径(板书:直径)
师:直径一般用字母d来表示,在自己的圆里给折痕画出一条直径,标上字母d。
生:完成
师:同一个圆里,直径有多少条,长度有什么特点?
生:略
师:直径这条线段,它通过了…?它的两个端点分别在哪里?
生:通过圆心,两个端点都在圆的曲线上。(完成直径定义的相应板书)
反馈⑥:这些折痕的长度是半径长度的2倍或直径的长度是半径的2倍。
师追问:你是怎样得出这个结论的,说说道理。
生①:直径通过圆心,以圆心为界,可以把直径分成两条半径。
生②:在我的圆里,经过测量可以验证这个发现,我的圆里直径的长度都是□厘米,半径的长度都是□厘米,所以说直径是半径长度的2倍。
师:换过来说,半径的长度就是直径的… …。生:略师:写出字母公式:d=2r r= d 2 ,注意强调“同一个圆里”。
(以上6点反馈,学生说出多少就处理多少,先说出哪一点,就先处理那一点。)
三、巩固
1.第108页“做一做”。用彩色笔标出下面各圆的半径和直径。
2.第109页练习二十五第3题。已知半径长求直径;已知直径长求半径。
(此项练习放在直径与半径长度关系揭示后进行)
3.学习按要求画圆。完成第108页“做一做”(画半径是3厘米的圆)。
教师示范,引导学生逐步完成。
(1)在作业本适当的地方点一个点做圆心,要考虑上、下、左、右的间距。
(2)以圆心为起点,向右水平方向画一条3厘米长的线段。
(3)圆规一脚固定在圆心,另一只脚在3厘米长线段的终点处,然后绕圆心旋转。
(4)标出字母o、r、d。
4.第109页练习二十五第2题。为什么车轮都要做成圆的,车轴装在哪里?
与圆的特征有关。因为圆曲线上的每一点到圆心的距离相等,车轴装在圆心,车轴到地面的距离永远是半径,这样车轮行驶平稳。(配图:如果车轮在水平的路面上行驶,车轮运行时车轴移动形成的直线(轨迹)与地面平行)
5.阅读第109页第5题,独立填书。
想:怎样测量1元硬币的直径?
让学生在实物投影上边演示边说。
教学案例:
本教学案例是北师大版六年级数学上册第一单元圆--圆的认识(一)
教学目标:
1. 使学生认识圆,知道圆的各部分名称;掌握圆的特征,理解和掌握同一个圆里半径和直径的关系。
2. 通过分组学习,动手操作,主动探索等活动,培养学生用圆规画圆的作图能力,学生观察、分析、抽象等思维能力。
3.培养学生的操作能力及空间想象能力,渗透辩证唯物主义认识论的观点。
探究重点:理解圆的概念,归纳圆的特征。
学具准备:圆形纸片、圆规、直尺等。
探究学习过程:
一、设疑揭题,明确目标
1.大屏幕出示教材套圈游戏的第一幅图:一些小朋友像图中这样站立进行套圈游戏,比谁能套中小旗。对于这样的方式,你有什么想法?同桌间先交流一下。
生1:我认为这样的比赛不公平,站在中间的小朋友容易套中。
生2:我也认为这种比赛不公平,因为每个小朋友离小旗的距离是不相等的。
师:站的近的小朋友比较容易套中,很显然这样是不公平的。那么站成正方形又会怎样哪?(呈现教材第二幅图)
生:这样还是不公平,因为边上四个人离小旗近,角上的四个人离小旗远。
师:站成正方形还是不能解决游戏中的公平问题。怎样才能公平呢?
生:有办法了,站成圆形就可以了。
师:(大屏幕出示第三幅图)为什么站成圆形就公平呢?
生:因为无论站在什么地方,小朋友和小旗的距离一样。
为什么站成圆形进行套圈游戏比较公平?
通过我们的学习,老师相信你们能自己解决。
[创设情境,激发学生学习兴趣:通过游戏,学生轻松愉快的学习并掌握新知,学生学习主动,积极性高。]
二、自主探究,合作交流
(一)直观比较、了解概念。(圆)
圆跟我们已学过的平面图形有什么不一样呢?
(课件出示以前学过的图形:先闪动围成三角形和四边形的线段,再将围成圆的曲线用红线走了一圈。根据学生的回答,师板书:圆是曲线图形)
你能举出日常生活中哪些物体上有圆形吗?(生举例)
(二)操作引路,感知概念(名称、特征)
结合你们在美术课上学剪窗花的相关知识,用一张正方形的纸,不借助任何作图工具,以小组为单位,剪出一个圆。学生分组行动后,请各组举起自己的圆,为什么有的同学一下子能剪出圆,有的却不是一个圆?你可以将纸折折,也可以用笔画一下,发现了什么?学生画画、折折。
生1:(兴高采烈,有了新发现):看,我们组剪出来的图形近似圆,我们发现刚才折纸的时候,再对折,将纸折成一个小三角,剪圆、展开,纸中心有一点,而且,我们发现,从这点到圆上一点的长度是差不多的。
生2:(有所发现)我组剪出来的图形不象圆,我们也将纸对折,再对折成小三角,剪出的图形从中心一点到图形边上任意一点的距离长短不一。
师:我在教室转的过程中,发现有几位学生剪的较好,我就请其中一位说说他是怎么剪的?
生:我们小组发现一个秘密,要使剪出的图形象圆,就必须先定一个点,再定一个长,以定点为中心,以定长为距离在四周画出许多点,沿着这些点剪下来,剪出来的图形就是圆。
师:大家照这位学生的话去做,重新剪出一个圆,再讨论,看看能发现什么?
(大家高兴极了,分组继续操作)
大多数手举他剪的圆。(我发现圆上画有半径、直径或其它线段)。学生边举圆边发言,我只是在旁倾听,不做干预。
[通过学生的折和量,来发现感知圆里的知识,帮助学生形成表象,为学生探索圆各部分的名称,猜想圆的特征,起了很好的铺垫作用。同时在动手操作活动中,让学生参与了学习过程,使学生在知识的形成过程中发挥主体作用。]
(三)大胆尝试,找出画圆的方法
1.同桌交流,用手边的工具尝试画圆。
生1:我固定大拇指,用食指绕一圈,画出的图形就是一个圆。
生2:我我用一根毛线,给毛线的一端打个结,用图钉固定,在毛线的另一端栓一根铅笔,使铅笔和图钉的距离保持不变,把毛线拉紧绕一圈,也可以得出一个圆。
生3:我用圆规可以画圆,把圆规的一脚的针尖固定在一点上,另一脚旋转一周就可以画出一个圆。
师:圆规是画圆的专用工具,我们通常用圆规画圆。
请大家想一想刚才几位学生画圆的方法有什么相同之处?
(都是固定一点,以定长绕定点旋转一周就可得到一个圆。)
练习、下面哪些是圆的半径或直径?为什么?
《圆的认识》教学案例
[在学生经过操作,对圆的知识有了一定的感性认识的基础上,让学生自学课文,再通过互相交流,多媒体的演示,使学生逐步建立了完整的正确的概念。]
(四)猜想验证,概括特征。
1.分组讨论,进行猜想。
同学们,根据我们刚才折圆、量圆时所发现的,猜一猜,圆可能会有哪些特征呢?(学生分小组讨论)
2.交流讨论,提出猜想。
请各小组把讨论情况在全班交流一下。
(根据交流情况,师板书猜想内容)
3.各自验证,全班交流。
(全班学生各自想法验证:有的折圆,有的量折痕,有的在圆中画直径、半径,有的量直径、半径,有的列表记录量的数据……)
请同学们把你验证的方法和得出的结果告诉大家。
4.媒体演示,加深理解。
(多媒体将学生验证的圆的特征运用了旋转、重合,进行了动态演示)
5.学生概括,总结特征。
可以画无数条半径、无数条直径。所有直径都相等,所有半径都相等
这就是我们验证出来的圆的特征,同学们同意吗?
(异口同声:同意。一生提反对意见:这些特征必须在同一个圆里才能成立。)
哎呀,你真聪明,把大家容易疏忽的问题给提出来了,真了不起!(师边说边板书:在同一个圆里)
6.对照验证,完善猜想。
[运用"猜想验证"的方法,引导学生借助操作过程与已学过的半径、直径,对圆可能有哪些特征进行合理的猜想;通过小组讨论交流、相互补充,提高了学生分析推理能力;然后自己验证,使学生的求异思维得到发展;再通过多媒体的演示,最后让学生自己归纳概括出圆的特征。]
(在课堂上充分发挥学生主体能动性,学生通过动手操作,亲身体验,在课堂上及时提问,教师及时追问,学生去发现结果,从而获取新知,把解决问题的探索权利充分交给学生,让学生在主动从事教学活动,亲自参与,经历数学探索过程,最大限度地促进学生的发展。)
(五)自我实践,学会用圆规画圆。
1.以点A为圆心画两个大小不同的圆
2.画两个半径都是2厘米的圆。
3.师小结画圆步骤
( 画圆是这节课的非重点内容,学生通过自我实践便可掌握。)
讨论:圆的位置有什么确定?圆的大小有什么确定?
(圆心决定圆的位置,半径觉得圆的大小)
(六)、观察与思考:
1、课件动画演示:小鹿、小熊、小兔分别开着车轮是正方形、椭圆形、圆形的车进行比赛,比赛的结果小兔取得了胜利,学生发现小兔开的车的车轮是圆形的。
(通过动画演示,学生轻松愉快的学习,学习主动,积极性高。)
2.设疑。为什么车轮都是做成圆形的呢?
(课件闪动圆形轮胎后,圆跳出,师在黑板上贴上圆形纸片,然后学生试回答)
3.揭题。
正方形的中心点到边上各点的距离不全相等,这样的车轮滚动时不平稳;而圆在滚动时,圆心到圆周的距离都相等(同一个圆里半径相等)[(1)动画演示车赛,结果轮胎是圆形的车取得胜利,从而引出“车轮为什么要做成圆的",学生可根据已学的知识来解释,充分让学生感到数学是为生活服务的,激发学生探索知识的兴趣与热情。(2)学生根据课题提出自己所要了解的内容,充分发挥其自我探索的能力。]
三、巩固新知
1.填空。
(1)圆是平面上的一种( )。
(2)左图圆内固定的一点O是这个圆的( );线段OB是这个圆的( ),用字母( )表示;线段AC叫做圆的( ),用字母( )表示。
(3)在同一个圆里,直径与半径的比是( )。
(4)把一个圆规的两脚张开4厘米,画一个圆,它的直径是( )。
2.判断。
(1)两端都在圆上的线段叫做直径。( )
(2)圆里有无数条半径,无数条直径。( )
(3)所有的半径都相等,所有的直径都相等。( )
(4)半径决定着圆的大小,圆心决定着圆的位置。( )
(5)画直径5厘米的圆,圆规两脚间的距离是2.5厘米。( )
(6)直径6厘米的圆比半径4厘米的圆大。( )
3.操作。
指出下面圆的几条线段中哪一条是直径。
量一量这几条线段的长度,可以知道,
两端都在圆上的线段,直径是最( )的一条。
根据这个道理,请你测量没有标出圆心的圆的直径。
《圆的认识》教学案例
你能用圆的知识解释下列现象?
井盖为什么是圆的呢?
人们在围观时,为什么会自然围城圆形呢?
(训练学生动手操作能力,让学生感知数学中也存在美,并能用所学知识创造美,从而激发学生学习数学的兴趣)
四、质疑释疑:
学了"圆的认识"这节课,你还想知道些什么?
(生甲:圆的周长和面积怎样求?
生乙:怎样在操场上画一个很大的圆?……)
你们所提出的问题在以后的学习中都会得到解决。现在老师有一个问题需要大家帮忙?老师给二年级同学上体育,课前想在操场上画几个大圆圈让学生做游戏,没有这么大的圆规怎么办?
(可以让两名学生上来演示,作为给学生的提示:一名学生站着不动,另一名学生拉着他走一圈)
(通过此练习,发散学生的思维,开拓学生的思维,有利于学生空间观念的建立)。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号