当前位置:首页 > 教案教学设计 > 数学教案

圆的弧与弦的关系

日期:2022-02-05

这是圆的弧与弦的关系,是优秀的数学教案文章,供老师家长们参考学习。

圆的弧与弦的关系

圆的弧与弦的关系第 1 篇

  教学目标:

  (1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;

  (2)培养学生实验、观察、发现新问题,探究和解决问题的能力;

  (3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.

  教学重点、难点:

  重点:圆心角、弧、弦、弦心距之间关系定理的推论.

  难点:从感性到理性的认识,发现、归纳能力的培养.

  教学活动设计

  教学内容设计

  (一)圆的对称性和旋转不变性

  学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.

  引出圆心角和弦心距的概念:

  圆心角定义:顶点在圆心的角叫圆心角.

  弦心距定义:从圆心到弦的距离叫做弦心距.

  (二)圆心角、弧、弦、弦心距之间的关系

  应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的`积极性.

  定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.

  (三)剖析定理得出推论

  问题1:定理中去掉在同圆或等圆中这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)

  举出反例:AOB=COD,但AB CD, .(强化对定理的理解,培养学生的思维批判性.)

  问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.

  推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)

  (四)应用、巩固和反思

  例1、点O是EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD.

  解(略,教材87页)

  例题拓展:当P点在圆上或圆内是否还有AB=CD呢?

  (让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)

  练习:(教材88页练习)

  1、已知:AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空: .

  (1)如果AB=CD,那么______,______,______;

  (2)如果OE=OG,那么______,______,______;

  (3)如果 = ,那么______,______,______;

  (4)如果AOB=COD,那么______,______,______.

  (目的:巩固基础知识)

  2、(教材88页练习3题,略.定理的简单应用)

  (五)小结:学生自己归纳,老师指导.

  知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.

  能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.

  (六)作业:教材P99中1(1)、2、3.

圆的弧与弦的关系第 2 篇

  教学目标

  知识

  技能 1.通过观察实验,使学生了解圆心角的概念.

  2.掌握在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等,以及它们在解题中的应用.

  过程

  方法 通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题,进一步理解和体会研究几何图形的各种方法.

  情感

  态度 激发学生观察、探究、发现数学问题的兴趣和欲望.

  教学重点

  在同圆或等圆中,相等的圆心角所对的弧相等,所对弦也相等及其两个推论和它们的应用.

  教学难点

  探索定理和推导及其应用.

  教学过程设计

  教学程序及教学内容 师生行为 设计意图

  一、导语这节课我们继续研究圆的性质,请同学们完成下题.

  1.已知△OAB,如图所示,作出绕O点旋转30、45、60的图形.

  2.圆是中心对称图形吗?将圆旋转任意角度后会出现什么情况?我们学过的几何图形中既是中心对称图形,又是轴对称图形的是?

  二、探究新知

  (一)、圆心角定义

  在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,AOB的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.

  (二)、圆心角、弧、弦之间的关系定理

  1.按下列要求作图并回答问题:

  如图所示的⊙O中,分别作相等的圆心角AOB和AOB将圆心角AOB绕圆心O旋转到A‵OB‵的位置,你能发现哪些等量关系?为什么?

  得到: 在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.

  2.在等圆中相等的圆心角是否也有所对的弧相等,所对的弦相等呢?

  综合1、2,我们可以得到关于圆心角、弧、弦之间的关系定理:

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.

  3.分析定理:去掉“在同圆或等圆中”这个条件,行吗?

  4.定理拓展:

  ○1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,所对的弦也分别相等吗?

  ○2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,所对的弧也分别相等吗?综上得到

  在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等.

  在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等.

  综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.

  (三)、定理应用

  1.课本例1

  2.如图,在⊙O中,AB、CD是两条弦,OEAB,OFCD,垂足分别为EF.

  (1)如果AOB=COD,那么OE与OF的大小有什么关系?为什么?

  (2)如果OE=OF,那么 与 的大小有什么关系?AB与CD的大小有什么关系?为什么?AOB与COD呢?

  三、课堂训练

  完成课本83页练习

  补充:如图3和图4,MN是⊙O的直径,弦AB、CD相交于MN上的一点P,APM=CPM.

  (1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.

  (2)若交点P在⊙O的.外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.

  四、小结归纳

  1.圆心角概念.

  2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,则它们所对应的其余各组量都分别相等,及它们的应用.

  五、作业设计

  作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做. 教师布置学生画图,复习旋转知识,为探究本节课定理作铺垫

  学生通过画图复习旋转知识,明白绕O点旋转,O点就是旋转中心,旋转30,就是旋转角是30

  学生画一个圆,按教师要求操作,观察,思考,交流,教师给出圆心角定义,

  学生按照要求作图,并观察图形,结合圆的旋转不变性和相关知识进行思考,尝试得出关系定理,再进行严格的几何证明.

  学生思考,类比同圆中得到的结论进行探究,猜想,并验证

  学生思考,明白该前提条件的不可缺性,师生分析,进一步理解定理.

  教师引导学生类比定理独立用类似的方法进行探究,得到推论

  学生审题,理清题中的数量关系,由本节课知识思考解决方法.

  教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,体会方法,总结规律.

  让学生尝试归纳,总结,发言,体会,反思,教师点评汇总

  通过学生亲自动手操作发现圆的旋转不变性,为后续探究打下基础

  通过该问题引起学生思考,进行探究,发现关系定理,初步感知培养学生的分析能力,解题能力.

  为继续探究其推论奠定基础.

  感受类比思想,类比中全面透彻地理解和掌握关系定理和它的推论,并进行推广,得到其他几个定理,完整的把握所学知识.

  给出一般叙述,以其更好的应用.

  培养学生解决问题的意识和能力,体会转化思想,化未知为已知,从而解决本题.

  运用所学知识进行应用,巩固知识,形成做题技巧

  让学生通过练习进一步理解,培养学生的应用意识和能力

  归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯

  巩固深化提高

  板 书 设 计

  课题

  圆心角、弧、弦之间的关系定理 关系定理应用

  1. 2. 归纳

  教 学 反 思

圆的弧与弦的关系第 3 篇

  教学目标:

  (1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;

  (2)培养学生实验、观察、发现新问题,探究和解决问题的能力;

  (3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.

  教学重点、难点:

  重点:圆心角、弧、弦、弦心距之间关系定理的推论.

  难点:从感性到理性的认识,发现、归纳能力的培养.

  教学内容设计

  (一)圆的对称性和旋转不变性

  学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.

  引出圆心角和弦心距的概念:

  圆心角定义:顶点在圆心的角叫圆心角.

  弦心距定义:从圆心到弦的距离叫做弦心距.

  (二)圆心角、弧、弦、弦心距之间的关系

  应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.

  定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.

  (三)剖析定理得出推论

  问题1:定理中去掉在同圆或等圆中这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)

  举出反例:如图,AOB=COD,但AB CD, .(强化对定理的理解,培养学生的思维批判性.)

  问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.

  推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)

  (四)应用、巩固和反思

  例1、如图,点O是EPF的平分线上一点,以O为圆心的圆和角的.两边所在的直线分别交于点A、B和C、D,求证:AB=CD.

  解(略,教材87页)

  例题拓展:当P点在圆上或圆内是否还有AB=CD呢?

  (让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)

  练习:(教材88页练习)

  1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空: .

  (1)如果AB=CD,那么______,______,______;

  (2)如果OE=OG,那么______,______,______;

  (3)如果 = ,那么______,______,______;

  (4)如果AOB=COD,那么______,______,______.

  (目的:巩固基础知识)

  2、(教材88页练习3题,略.定理的简单应用)

  (五)小结:学生自己归纳,老师指导.

  知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.

  能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.

  (六)作业:教材P99中1(1)、2、3.

圆的弧与弦的关系第 4 篇

知识与能力:

(1)了解圆心角的概念。

(2)掌握弧弦圆心角的定理和推论。

(3)能灵活应用弧弦圆心角定理及推论解决问题。

过程与方法:

(1)复习旋转的知识,得到圆心角的概念,然后用圆心角和旋转探索圆心角定理,最后应用它解决一些问题。

(2)在教学过程中,学生与同伴交流,提高学生的合作交流意识。

情感态度价值观:

经历探索弧弦圆心角定理及其结论的过程,提高学生的数学能力。

重点:弧弦圆心角定理及推论的应用。

难点:定理及其推论的探索与应用。

教学环节:

一、导语

1、判断圆是中心对称图形吗?对称中心在哪里?

二、探究

(一)圆心角的定义

我们把顶点在圆心的角叫做圆心角。

1、判别下列各图中的角是不是圆心角,并说明理由。

(二)弧、弦、圆心角定理

2、(1)将∠aob=∠a′ob′,将∠a′ob′旋转到∠aob的位置,它能否与∠aob完全重合?

(2)如能重合,你会发现哪些等量关系?为什么?

(3)如果两个角在两个等圆中,能否得到相似的结论?

综合上述所得,在同圆或等圆中,圆心角、弧、弦之间的关系定理。

(4)分析定理,去掉“在同圆或等圆中”条件,行吗?

3、定理拓展:

(1)在同圆或等圆中,如果两条弧相等,它们所对的圆心角,所对的弦也分别相等吗?

(2)在同圆或等圆中,如果两条弦相等,它们所对的圆心角,所对的弧也分别相等吗?

综上所得,在同圆或等圆中,两个圆心角,两条弧,两条弦,其中有一组量相等,其余各组量也分别相等。

(三)定理应用

1.判断下列说法是否正确。

(1)相等的圆心角所对的弧相等。()

(2)相等的弧所对的弦相等。()

(3)相等的弦所对的弧相等。()

(4)弦相等所对的圆心角相等。()

(5)等弧所对的圆心角相等。()

《弧弦圆心角之间的关系》教学设计

2、如图,ab、cd是⊙o的两条弦。

(1)如果ab=cd,那么,。

(2)如果弧ab=弧cd,那么,。

(3)如果∠aob=∠cod,那么,。

(4)如果ab=cd,oe⊥ab于e,

of⊥cd于f,oe与of相等吗?为什么?

(四)典例分析

例1如图,在⊙o中,ab=ac,∠acb=60°,

《弧弦圆心角之间的关系》教学设计

求*∠aob=∠boc=∠aoc。

*:∵ab=ac

∴ab=ac,△abc是等腰三角形

又∠acb=60°

∴△abc是等边三角形,ab=bc=ca

∴∠aob=∠boc=∠aoc

例2、如图,ab是⊙o的直径,bc=cd=de,∠cod=35°,求∠aoe的度数。

《弧弦圆心角之间的关系》教学设计

*:∵bc=cd=de

∴∠cob=∠cod=∠doe=35°

∴∠aoe=1800-∠cob-∠cod-∠doe

=750

(五)小结归纳

1、圆心角的概念。

2、在同圆或等圆中,两个圆心角,两条弦,两条弧三个量之间的关系。

(六)作业设计

作业:复习巩固作业和综合应用为全体学生做,拓广探索为成绩中上游学生做。

板书设计:

课题圆心角、弧、弦之间的关系

关系定理应用

1、2、

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号