当前位置:首页 > 教案教学设计 > 数学教案

指数教学教案

日期:2022-02-05

这是指数教学教案,是优秀的数学教案文章,供老师家长们参考学习。

指数教学教案

指数教学教案第 1 篇

  教学目标:

  1.理解 次方根和 次根式的概念及其性质,能根据性质进行简单的根式计算.

  2.通过对根式的学习,使学生能进一步认清各种运算间的联系,提高归纳,概括的能力.

  3.通过对根式的化简,使学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想.

  教学重点难点:

  重点是 次方根的概念及其取值规律.

  难点是 次方根的概念及其运算根据的研究.

  教学用具:投影仪

  教学方法:启发探索式.

  教学过程:

  一. 复习引入

  今天我们将学习新的一节指数.指数与其说它是一个概念,不如说它是一种重要的运算,且这种运算在初中曾经学习过,今天只不过把它进一步向前发展.

  下面从我们熟悉的指数的复习开始.能举一个具体的指数运算的例子吗?

  以 为例,是指数运算要求学生指明各部分的名称,其中2称为底数,4为指数, 称为幂.

  教师还可引导学生回顾指数运算的由来,是从乘方而来,因此最初指数只能是正整数,同时引出正整数指数幂的定义. .然后继续引导学生回忆零指数幂和负整数指数幂的定义,分别写出 及 ,同时追问这里 的由来.最后将三条放在一起,用投影仪打出整数指数幂的概念

  2.5指数(板书)

  1. 关于整数指数幂的复习

  (1) 概念

  既然是一种运算,除了定义之外,自然要给出它的运算规律,再来回顾一下关于整数指数幂的运算性质.可以找一个学生说出相应的运算性质,教师用投影仪依次打出:

  (2) 运算性质: ; ; .

  复习后直接提出新课题,今天在此基础上把指数从整数范围推广到分数范围.在刚才的复习我们已经看到当指数在整数范围内时,运算最多也就是与分式有关,如果指数推广到分指数会与什么有关呢?应与根式有关.初中时虽然也学过一点根式,但不够用,因此有必要先从根式说起.

  2. 根式(板书)

  我们知道根式来源于开方,开方是乘方的逆运算,所以谈根式还是先从大家熟悉的乘方说起.

  如

  如果给出了4和2进行运算,那就是乘方运算.如果是知道了16和2,求4即 ,求?

  问题也就是: 谁的平方是16 ,大家都能回答是4和-4,这就是开方运算,且4和-4 有个名字叫16的平方根.

  再如

  知3和8,问题就是谁的立方是8?这就是开方运算,大家也知道结果为2,同时指出2叫做8的立方根.

  (根据情况教师可再适当举几个例子,如 ,要求学生用语言描述式子的含义,I再说出结果分别为 和-2,同时指出它们分别称为9的四次方根和-8的立方根)

  在以上几个式子会解释的基础上,提出 即一个数的 次方等于 ,求这个数,即开 次方,那么这个数叫做 的 次方根.

  (1) 次方根的定义:如果一个数的 次方等于 ( ,那么这个数叫做 的 次方根.

  (板书)

  对定义理解的第一步就是能把上述语言用数学符号表示,请同学们试试看.

  由学生翻译为:若 ( ,则 叫做 的 次方根.(把它补在定义的后面)

  翻译后教师在此基础上再次提出翻译的不够彻底,如结论中的 的 次方根就没有用符号表示,原因是什么?(如果学生不知从何入手,可引导学生回到刚才的几个例子,在符号表示上存在的问题,并一起研究解决的办法)最终把问题引向对 的 次方根的取值规律的研究.

  (2) 的` 次方根的取值规律: (板书)

  先让学生看到 的 次方根的个数是由 的奇偶性决定的,所以应对 分奇偶情况讨论

  当 为奇数时,再问学生 的 次方根是个什么样的数,与谁有关,再提出对 的正负的讨论,从而明确分类讨论的标准,按 的正负分为三种情况.

  Ⅰ当 为奇数时

  , 的 次方根为一个正数;

  , 的 次方根为一个负数;

  , 的 次方根为零. (板书)

  当奇数情况讨论完之后,再用几个具体例子辅助说明 为偶数时的结论,再由学生总结归纳

  Ⅱ当 为偶数时

  , 的 次方根为两个互为相反数的数;

  , 的 次方根不存在;

  , 的 次方根为零.

  对于这个规律的总结,还可以先看 的正负,再分 的奇偶,换个角度加深理解.

  有了这个规律之后,就可以用准确的数学符号去描述 次方根了.

  (3) 的 次方根的符号表示 (板书)

  可由学生试说一说,若学生说不好,教师可与学生一起总结,当 为奇数时,由于无论 为何值, 次方根都只有一个值,可用统一的符号 表示,此时要求学生解释符号的含义: 为正数,则 为一个确定的正数, 为负数, 则 为一个确定的负数, 为零,则 为零.

  当 为偶数时, 为正数时,有两个值,而 只能表示其中一个且应表示是正的,另一个应与它互为相反数,故只需在前面放一个负号,写成 ,其含义为 为偶数时,正数的 次方根有两个分别为 和 .

  为了加深对符号的认识,还可以提出这样的问题: 一定表示一个正数吗? 中的 一定是正数或非负数吗?让学生来回答,在回答中进一步认清符号的含义,再从另一个角度进行总结 .对于符号 ,当 为偶数是,它有意义的条件是 ;当 为奇数时,它有意义的条件时 .

  把 称为根式,其中 为根指数, 叫做被开方数.(板书)

  (4) 根式运算的依据 (板书)

  由于 是个数值,数值自然要进行运算,运算就要有根据,因此下面有必要进一步研究根式运算的依据.但我们并不过分展开,只研究一些最基本的最简单的依据.

  如 应该得什么?有学生讲出理由,根据 次方根的定义,可得Ⅰ = .(板书)

  再问: 应该得什么?也得 吗?

  若学生想不清楚,可用具体例子提示学生,如 吗? 吗?让学生能发现结果与 有关,从而得到Ⅱ = .(板书)

  为进一步熟悉这个运算依据,下面通过练习来体会一下.

  三.巩固练习

  例1. 求值

  (1) . (2) .

  (3) . (4) .

  (5) .(

  要求学生口答,并说出简要步骤.

  四.小结

  1. 次方根与 次根式的概念

  2.二者的区别

  3.运算依据

  五.作业 略

  六.板书设计

  2.5指数 (2)取值规律 (4)运算依据

  1. 复习

  2. 根式 (3)符号表示 例1

  (1)定义

指数教学教案第 2 篇

由于《指数函数图像和性质》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图像性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面: 1.创设问题情景.让学生先画出指数函数y=2x与y=(1/2)x的图像,调动学生的动手的积极性,激发学生的探究心理,顺利引入课题,而这样的练习又恰好为研究指数函数中底数大于1和底数大于0小于1的图像做好了准备。 2.强化“指数函数的图像与性质”的'理解与应用.引导学生结合指数函数y=2x与y=(1/2)x的图像研究其性质,进而推广到研究一般指数函数图像与性质,让学生充分体验知识的产生过程,并将其应用于具体的数学问题中。 3.突出图像的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的图像与性质时,更是直接由图像观察得出性质,因此图像发挥了主要的作用。 4.注意数学与生活和实践的联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活中的数学问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。

指数教学教案第 3 篇

  教材分析

  (一)本课时在教材中的地位及作用:

  指数函数的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。指数函数第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

  (二)教学目标:

  1、知识目标:掌握指数函数的概念,图像和性质。

  2、能力目标:通过数形结合,利用图像来认识,掌握函数的性质,增强学生分析问题,解决问题的能力。

  3、德育目标:对学生进行辩证唯物主义思想的教育,使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。

  (三)教学重点,难点和关键:

  1、重点:指数函数的定义、性质和图象。

  2、难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质。

  3、关键:能正确描绘指数函数的图象。

  教学基本思路:

  在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。

  学法指导:

  1、学情分析:

  大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。

  2、学法指导:

  针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

指数教学教案第 4 篇

  教学目标:

  1、 能较熟练地运用零指 数幂与负整指数幂的性质进行有关计算。

  2、会利用10的负整数次幂,用科学记数法表示一些绝对值较小的数。

  重点难点:

  重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数

  难点:理解和应用整数指数幂的性质。

  教学过程:

  一、 复习练习:

  1、 ; =; =, =, =。

  2、不用计算器计算: ÷(—2)2—2-1+

  二、指数的'范围扩大到了全体整数.

  1、探 索

  现在,我们已经 引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数. 那么,在“幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立.

  (1) ;(2)(ab)-3=a-3b-3;(3)(a-3)2=a(-3)×2

  2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。

  3、例1计算(2mn2)-3(mn-2)-5 并且把结果化为只含有正整数指数幂的 形式。

  解:原式=2-3m-3n-6×m-5n10= m-8n4=

  4练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:

  (1)(a-3)2(ab2)-3;(2)(2mn 2)-2(m-2n-1)-3.

  三、科学记数法

  1、回忆:在之前的学习中,我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示 成a×10n的形式,其中n是正整数 ,1≤∣a∣<10.例如, 864000可以写成8.64×105.

  2、类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表 示成a×10-n的形式,其中n是正 整数,1≤∣a∣<10.

  3、探索:

  10-1=0.1

  10-2=

  10-3=

  10 -4=

  10-5=

  归纳:10-n=

  例如,上面例2(2)中的0.000021 可以 表示成2.1×10-5.

  4、例2、一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.

  分 析 我们知道:1纳米= 米.由 =10-9可知,1纳米=10-9米.

  所以35纳米=35 ×10-9米.

  而35×10-9=(3.5×10)×10-9

  =35×101+(-9)=3.5×10-8,

  所以 这个纳米粒子的直径为3.5×10-8米.

  5、练 习

  ①用科学记数法表 示:

  (1)0.000 03;(2)-0.0000064;(3)0.0000314;(4)2013000.

  ②用科学记数法填空:

  (1)1秒是1微秒的1000000倍,则1微秒=_________秒;

  (2)1毫克=_____ ____千克;

  (3)1微米=_________米; (4)1纳米=_________微 米;

  (5)1平方厘米=_________平方米; (6)1毫升=_________ 立方米.

  本课小结 :

  引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍然成立。科学记数法不仅可以表示一个绝对值大于10的数,也可以表示一些绝对值较小的数,在应用中,要注意a必须满足,1≤∣a∣<10.其中n是正整数

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号