当前位置:首页 > 教案教学设计 > 数学教案

有理数定义

日期:2022-02-11

这是有理数定义,是优秀的数学教案文章,供老师家长们参考学习。

有理数定义

有理数定义第 1 篇

  1.1 正数和负数(2)

  教学目标:

  1、知识与技能:在了解正负数的概念的基础上,使学生灵活运用正负数的来表示相反意义量

  2、过程与方法:通过用正负数的来表示相反意义量的教学,培养学生观察、比较和概括的思维能力.教法主要采用启发式教学

  3、情感态度与价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,学会交流

  教学重点:

  深化对正负数概念的理解

  教学难点:

  正确理解和表示向指定方向变化的量

  教学准备:彩色粉笔

  教学过程:

  一、复习引入:

  上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢? 问题1:有没有一种既不是正数又不是负数的数呢?

  学生思考并讨论.

  (数0既不是正数又不是负数,是正数和负数的分界,是基准.

  例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数。那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数²

  二、讲解新课

  把0以外的数分为正数和负数,它们表示具有相反意义的量。随着对正数、负数意义认识的加深,正数和负数在实践中得到了广泛的应用。在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔高度为0米),通常用正数表示高于海平面的某地的海拔高

  度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。

  思考:教科书第4页(学生先思考,教师再讲解)

  三、课堂练习 课本 P4练习1,2,3,4

  四、课时小结

  引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示. 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.

  五、课外作业 教科书P5: 2、4

  板书设计:

有理数定义第 2 篇

  .2.1 有理数

  教学目标:

  1、知识与技能:使学生理解整数、分数、有理数的概念。并会判断一个给定的数是整数或分数或有理数,会对有理数进行分类,培养学生观察、比较和概括的思维能力

  2、过程与方法:从直观认识到理性认识、从而建立有理数概念。通过学习有理数概念,体会对应的思想,数分类的思想教法,主要采用启发式教学。

  3、情感态度与价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神, 教学重点:

  了解有理数包括哪些数。

  教学难点:

  要明确有理数分类的标准,分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。

  教学准备:彩色粉笔

  教学过程:

  一、复习引入:

  1.填空:

  ①正常水位为0m,水位高于正常水位0.2m 记作 ,低于正常水位0.3m记作 。 ②乒乓球比标准重量重0.039g记作 ,比标准重量轻0.019g记作 ,标准重量记作 。

  2.一个物体沿东西两个相反的方向运动时可以用正负数表示它们的运动,如果向东运动4m记作4m,向西运动8m记作 ;如果―7m表示物体向西运动7m,那么6m表明物体怎样运动?(1+0.2;–0.3;+0.039;–0.019;2.–8m;向东运动6m)

  二、讲授新课:

  1.数的扩充:

  数1,2,3,4,„叫做正整数;―1,―2,―3,―4,„叫做负整数;正整数、负整数和零统称为整数;数2,1,84,+5.6,„叫做正分数;―7,―6,―3.5,„叫做负分数;34597

  正分数和负分数统称为分数;整数和分数统称为有理数。

  2.思考并回答下列问题:

  ①“0”是整数吗?是正数吗?是有理数吗?

  ②“―2”是整数吗?是正数吗?是有理数吗?

  ③自然数就是整数吗?是正数吗?是有理数吗?

  要求学生区分“正”与“整”;小数可化为分数。

  3.有理数的分类

  不同的分类标准可以将有理数进行不同的分类:

  ①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表:

  正整数正整数ì{正有理数整数í0正分数ììî负整数有理数í有理数í0îî负有理数{负整数分数{正分数

  负分数 负分数

  ②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如上分类表:(注:①“0”也是自然数。②“0”的特殊性。)

  4、把一些数放在一起,就组成一个数的集合,简称数集(set of number)。所有正数组成的集合,叫做正数集合;所有负数组成的集合叫做负数集合;所有整数组成的集合叫整数集合;所有分数组成的集合叫分数集合;所有有理数组成的集合叫有理数集合;所有正整数和零组成的集合叫做自然数集。

有理数定义第 3 篇

  [教学目标]

  1。正我有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

  2。了解分类的标准与分类结果的相关性,初步了解"集合"的含义;

  3。体验分类是数学上的常用的处理问题的方法。

  [教学重点与难点]

  重点:正确理解有理数的概念。

  难点:正确理解分类的标准和按照定的标准进行分类。

  [教学设计]

  [设计说明]

  一。知识回顾和理解

  通过两节课的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗?。(3名学生板书)

  [问题1]:我们将这三为同学所写的数做一下分类。

  (如果不全,可以补充)。

  [问题2]:我们是否可以把上述数分为两类?如果可以,应分为哪两类?

  二。明确概念 探究分类

  正整数、0、负整数统称整数,正分数和负分数统称分数。

  整数和分数统称有理数

  [问题3]:上面的分类标准是什么?我们还可以按其它标准分类吗?

  三。练一练 熟能生巧

  1。任意写出三个数,标出每个数的所属类型,同桌互相验证。

  2。把下列各数填入它所属于的集合的圈内:

  15,— ,—5, , ,0。1,—5。32,—80,123,2。333。

  正整数集合 负整数集合

  正分数集合 负分数集合

  每名学生都参照前一名学生所写的',尽量写不同类型的,最后有下面同学补充。

  在问题2中学生说出按整数和分数来分,或按正数和负数来分,可以先不去纠正遗漏0的问题,在后面分类是在解决。

  教师可以按整数和分数的分类标准画出结构图,,而问题3中的分类图可启发学生写出。

  在练习2中,首先要解释集合的含义。

  练习2中可补充思考:四个集合合并在一起是什么集合?(若降低难度可分开问)

  [小结]

  到现在为止我们学过的数是有理数(圆周率π除),有理数可以按不同的标准进行分类,标准不同时,分类的结果也不同。

  [作业]

  必做题:教科书第18页习题1。2:第1题。

  作业2。把下列给数填在相应的大括号里:

  —4,0。001,0,—1。7,15, 。

  正数集合{ …},负数集合{ …},

  正整数集合{ …},分数集合{ …}

  [备选题]

  1。下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?

  +7,—5, , ,79,0,0。67, ,+5。1

  2。0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?

  3。图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分。你能说出这个重叠部分表示什么数的集合吗?

  正数集合 整数集合

  这里可以提到无限不循环小数的问题。并特殊指明我们以前所见到的数中,只有π是一个特殊数,它不是有理数。但3。14是有理数。

  作业2意在使学生熟悉集合的另一种表示形式。

  利用此题明确自然数的范围。0是自然数。这点可以在前面的教学中出现。

  3题是一个探索题,有一定难度,可以分步完成,不如先写出正数,在写出整数,观察都具备的是其中哪个数。

有理数定义第 4 篇

  (一)从学生原有的认知结构提出问题

  大家知道,数学与数是分不开的,它是一门研究数的学问。现在我们一起来回忆一下,小学里已经学过哪些类型的数?

  学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。

  为了表示一个人、两只手、……,我们用到整数1,2,……

  4.87、……

  为了表示“没有人”、“没有羊”、……,我们要用到0.

  但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示

  (二)师生共同研究形成正负数概念

  某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。它们是具有相反意义的两个量。

  现实生活中,像这样的相反意义的量还有很多

  例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。 “运进”和“运出”,其意义是相反的

  同学们能举例子吗?

  学生回答后,教师提出:怎样区别相反意义的量才好呢?

  待学生思考后,请学生回答、评议、补充。

  教师小结:同学们成了发明家。甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃……其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用。所谓“赤字”,就是这样来的。

  现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。

  让学生用同样的方法表示出前面例子中具有相反意义的量:

  高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;

  教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。(三)介绍有理数的有关概念。

  1.给出新的整数、分数概念

  引进负数后,数的范围扩大了。过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。

  2.给出有理数概念

  整数和分数统称为有理数。

  3.有理数的分类

  为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?

  待学生思考后,请学生回答、评议、补充。

  教师小结:按有理数的符号分为三类:正有理数、负有理数和零。

  并指出,在有理数范围内,正数和零统称为非负数。并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号