日期:2021-05-06
这是集合之间的关系教案中职,是优秀的数学教案文章,供老师家长们参考学习。
子集
如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集。
符号语言:若任意a∈A,均有a∈B,则A⊆B或B⊇A。
真子集
如果集合A⊆B,存在元素x∈B,且元素x不属于集合A,我们称集合A与集合B有真包含关系,集合A是集合B的真子集。记作A⊊B(或B⊋A)。
非空真子集
如果集合A⊊B,且集合A≠∅,集合A是集合B的非空真子集。
全集
如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集(通常也把给定的集合称为全集),通常记作U。
空集
不含任何元素的集合叫做空集。空集是一切集合的子集。空集是任何非空集合的真子集。空集不是无;它是内部没有元素的集合。
集合的含义
“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
教学目标
1.知识与技能
(1)理解集合的包含和相等的关系.
(2)了解使用Venn图表示集合及其关系.
(3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系.
2.过程与方法
(1)通过类比两个实数之间的大小关系,探究两个集合之间的关系.
(2)通过实例分析,获知两个集合间的包含与相等关系,然后给出定义.
(3)从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念.
3.情感、态度与价值观
应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力.
2学情分析
这节是在学生刚进入高中的第二课时,前一节学习了集合的基本概念,已经对集合有了一定的认识和理解,
3重点难点
重点:子集的概念;
难点:元素与子集,即属于与包含之间的区别.
4教学过程 4.1第一学时 教学活动 活动1【活动】创设情境
提出问题
思考:实数有相关系,大小关系,类比实数之间的关系,联想集合之间是否具备类似的关系.
学生思考并类比实数间关系,理解集合之间的关系。
师:对两个数a、b,应有a>b或a = b或a<b.
而对于两个集合A、B它们也存在A包含B,或B包含A,或A与B相等的关系.
活动2【讲授】概念形成
分析示例:
示例1:考察下列三组集合,并说明两集合内存在怎样的关系
(1)A = {1,2,3}
B = {1,2,3,4,5}
(2)A = {新华中学高(一)6班的全体女生}
B = {新华中学高(一)6 班的全体学生}
(3)C = {x | x是两条边相等的三角形}
D = {x | x是等腰三角形}
1.子集:
一般地,对于两个集合A、B,如果A中任意一个元素都是B的元素,称集合A是集合B的子集,记作
A⊆B ,读作:“A含于B”(或B包含A)
示例2
1.A={x|x是两边相等的三角形};B={x|x是等腰三角形}.
2.A={x|x2-1=0};
B={-1,1}.
2.集合相等:
若A
⊆ B ,且B
⊆ A ,则A=B.
活动3【活动】概念 深化
1.Venn图
用平面上封闭曲线的内部代表集合.
如果 ,则Venn图表示为:
2.真子集
如果集合 ,但存在元素x∈B,且x
⊈ A,称A是B的真子集,记作A
⊆
B (或B
⊆ A).
示例3 考察下列集合. 并指出集合中的元素是什么?
(1)A = {(x,y) | x + y =2}.
(2)B = {x | x2 + 1 = 0,x∈R}.
3.空集
称不含任何元素的集合为空集,记作 .
规定:空集是任何集合的子集;空集是任何非空集合的真子集.
活动4【练习】能力 提升
一般结论:
① .
②若 , ,则 .
③A = B
⇔ ,且.
活动5【活动】自主探究
5. 子集的个数
写集合子集的一般方法:先写空集,然后按照集合元素从少到多的顺序写出来,一直到集合本身.写集合真子集时除去集合本身外其余子集都是它的真子集.
例 1.写出集合{a,b}的所有子集,并指出哪些是它的真子集.
解:集合{a,b}的所有子集为ø,{a},{b},{a,b}.真子集为 ø ,{a},{b}.
练习1 写出集合{a,b,c}的所有子集.
解:集合{a,b,c}的所有子集为○,{a},{b},{c},{a,b},
{a,c},{b,c},{a,b,c}.
问:根据上面两例,你能归纳出子集的个数与集合元素个数的关系吗?
含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2。解题时可以依据上面的结论检验解答正确与否.
活动6【活动】知识强化
练习:用适当的符号填空:
1)a____{a,b,c}; 2) 0____{x|x2=0};
3)○ ____{x∈R|x2+1=0};4){0,1} ____N;
5){0} ____{x|x2=x}; 6){2,1} ____{x|x2-3x+2=0}.
练习2 判断下列两个集合之间的关系:
1,A={1,2,4},B={x|x是8的约数};
2,A={x|x=3k,k∈N},B={x|x=6z,z∈N};
3,A={x|x是4与10的公倍数},B={x|x=20m,m∈N*}.
练习1:用适当的符号填空:
1)a____{a,b,c}; 2) 0____{x|x2=0};
3)○ ____{x∈R|x2+1=0};4){0,1} ____N;
5){0} ____{x|x2=x}; 6){2,1} ____{x|x2-3x+2=0}.
练习2 判断下列两个集合之间的关系:
1,A={1,2,4},B={x|x是8的约数};
2,A={x|x=3k,k∈N},B={x|x=6z,z∈N};
3,A={x|x是4与10的公倍数},B={x|x=20m,m∈N*}.
练习3 已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.
活动7【活动】课堂小结
1、本节课主要学习了哪些基本概念?学习了哪些集合符号?你能理解吗?集合的子集有哪些性质?
(1)基本概念
(2)基本符号
(3)性质
活动8【作业】课后作业
必做题:教材P12 第5题
2、已知M={x|2-x<0},集合N{x|ax=1},若N M,求实数a的取值范围。
1.1.2 集合间的基本关系
课时设计 课堂实录
1.1.2 集合间的基本关系
1第一学时 教学活动 活动1【活动】创设情境
提出问题
思考:实数有相关系,大小关系,类比实数之间的关系,联想集合之间是否具备类似的关系.
学生思考并类比实数间关系,理解集合之间的关系。
师:对两个数a、b,应有a>b或a = b或a<b.
而对于两个集合A、B它们也存在A包含B,或B包含A,或A与B相等的关系.
活动2【讲授】概念形成
分析示例:
示例1:考察下列三组集合,并说明两集合内存在怎样的关系
(1)A = {1,2,3}
B = {1,2,3,4,5}
(2)A = {新华中学高(一)6班的全体女生}
B = {新华中学高(一)6 班的全体学生}
(3)C = {x | x是两条边相等的三角形}
D = {x | x是等腰三角形}
1.子集:
一般地,对于两个集合A、B,如果A中任意一个元素都是B的元素,称集合A是集合B的子集,记作
A⊆B ,读作:“A含于B”(或B包含A)
示例2
1.A={x|x是两边相等的三角形};B={x|x是等腰三角形}.
2.A={x|x2-1=0};
B={-1,1}.
2.集合相等:
若A
⊆ B ,且B
⊆ A ,则A=B.
活动3【活动】概念 深化
1.Venn图
用平面上封闭曲线的内部代表集合.
如果 ,则Venn图表示为:
2.真子集
如果集合 ,但存在元素x∈B,且x
⊈ A,称A是B的真子集,记作A
⊆
B (或B
⊆ A).
示例3 考察下列集合. 并指出集合中的元素是什么?
(1)A = {(x,y) | x + y =2}.
(2)B = {x | x2 + 1 = 0,x∈R}.
3.空集
称不含任何元素的集合为空集,记作 .
规定:空集是任何集合的子集;空集是任何非空集合的真子集.
活动4【练习】能力 提升
一般结论:
① .
②若 , ,则 .
③A = B
⇔ ,且.
活动5【活动】自主探究
5. 子集的个数
写集合子集的一般方法:先写空集,然后按照集合元素从少到多的顺序写出来,一直到集合本身.写集合真子集时除去集合本身外其余子集都是它的真子集.
例 1.写出集合{a,b}的所有子集,并指出哪些是它的真子集.
解:集合{a,b}的所有子集为ø,{a},{b},{a,b}.真子集为 ø ,{a},{b}.
练习1 写出集合{a,b,c}的所有子集.
解:集合{a,b,c}的所有子集为○,{a},{b},{c},{a,b},
{a,c},{b,c},{a,b,c}.
问:根据上面两例,你能归纳出子集的个数与集合元素个数的关系吗?
含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2。解题时可以依据上面的结论检验解答正确与否.
活动6【活动】知识强化
练习:用适当的符号填空:
1)a____{a,b,c}; 2) 0____{x|x2=0};
3)○ ____{x∈R|x2+1=0};4){0,1} ____N;
5){0} ____{x|x2=x}; 6){2,1} ____{x|x2-3x+2=0}.
练习2 判断下列两个集合之间的关系:
1,A={1,2,4},B={x|x是8的约数};
2,A={x|x=3k,k∈N},B={x|x=6z,z∈N};
3,A={x|x是4与10的公倍数},B={x|x=20m,m∈N*}.
练习1:用适当的符号填空:
1)a____{a,b,c}; 2) 0____{x|x2=0};
3)○ ____{x∈R|x2+1=0};4){0,1} ____N;
5){0} ____{x|x2=x}; 6){2,1} ____{x|x2-3x+2=0}.
练习2 判断下列两个集合之间的关系:
1,A={1,2,4},B={x|x是8的约数};
2,A={x|x=3k,k∈N},B={x|x=6z,z∈N};
3,A={x|x是4与10的公倍数},B={x|x=20m,m∈N*}.
练习3 已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.
活动7【活动】课堂小结
1、本节课主要学习了哪些基本概念?学习了哪些集合符号?你能理解吗?集合的子集有哪些性质?
(1)基本概念
(2)基本符号
(3)性质
活动8【作业】课后作业
必做题:教材P12 第5题
2、已知M={x|2-x<0},集合N{x|ax=1},若N M,求实数a的取值范围。
Tags:1.1.2,集合,间的,基本,关系
教材分析:类比实数的大小关系引入集合的包含与相等关系
了解空集的含义
课 型:新授课
教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用Venn图表达集合间的关系;
(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;
教学过程:
一、引入课题
1、复习元素与集合的关系——属于与不属于的关系,填以下空白:
(1)0 N;(2) $2$2$2$2$2$2$2$2$2$2$2$2$2$2$2 Q;(3)-1.5 R
2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)
二、新课教学
(一) 集合与集合之间的“包含”关系;
A={1,2,3},B={1,2,3,4}
集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;
如果集合A的.任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。
记作: $2
$2$2
读作:A包含于(is contained in)B,或B包含(contains)A
当集合A不包含于集合B时,记作A B
用Venn图表示两个集合间的“包含”关系
B
A
$2
(二) 集合与集合之间的 “相等”关系;
$2,则 $2中的元素是一样的,因此 $2
即 $2
练习
结论:
任何一个集合是它本身的子集
(三) 真子集的概念
若集合 $2,存在元素 $2,则称集合A是集合B的真子集(proper subset)。
记作:A $2 B(或B $2$2$2A)
读作:A真包含于B(或B真包含A)
举例(由学生举例,共同辨析)
(四) 空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set),记作: $2
规定:
空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:
1 $2 2 $2,且 $2,则 $2
(六) 例题
(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>2},B={x|x $25},并表示A、B的关系;
(七) 课堂练习
(八) 归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;
(九) 作业布置
1、书面作业:习题1.1 第5题
2、提高作业:
1 已知集合 $2, $2≥ $2,且满足 $2,求实数 $2的取值范围。
2 设集合 $2,
$2,试用Venn图表示它们之间的关系。
板书设计(略)
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号