日期:2021-05-25
这是九年级反比例函数教案,是优秀的数学教案文章,供老师家长们参考学习。
知识技能目标
1.理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;
2.利用反比例函数的图象解决有关问题.
过程性目标
1.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;
2.探索反比例函数的图象的性质,体会用数形结合思想解数学问题.
教学过程
一、创设情境
上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质.
二、探究归纳
1.画出函数的图象.
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0.
解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.
3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.
上述图象,通常称为双曲线(hyperbola).
提问这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).
学生讨论、交流以下问题,并将讨论、交流的结果回答问题.
1.这个函数的图象在哪两个象限?和函数的图象有什么不同?
2.反比例函数(k≠0)的图象在哪两个象限内?由什么确定?
3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?
反比例函数有下列性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.
注1.双曲线的两个分支与x轴和y轴没有交点;
2.双曲线的两个分支关于原点成中心对称.
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.
在问题2中反映了在面积一定的情况下,饲养场的`一边越长,另一边越小.
三、实践应用
例1若反比例函数的图象在第二、四象限,求m的值.
分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值.
解由题意,得解得.
例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限.
分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx-k中,k<0,可知,图象过二、四象限,又-k>0,所以直线与y轴的交点在x轴的上方.
解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx-k的图象经过一、二、四象限.
例3已知反比例函数的图象过点(1,-2).
(1)求这个函数的解析式,并画出图象;
(2)若点A(-5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?
分析(1)反比例函数的图象过点(1,-2),即当x=1时,y=-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;
(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上.
解(1)设:反比例函数的解析式为:(k≠0).
而反比例函数的图象过点(1,-2),即当x=1时,y=-2.
所以,k=-2.
即反比例函数的解析式为:.
(2)点A(-5,m)在反比例函数图象上,所以,
点A的坐标为.
点A关于x轴的对称点不在这个图象上;
点A关于y轴的对称点不在这个图象上;
点A关于原点的对称点在这个图象上;
例4已知函数为反比例函数.
(1)求m的值;
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当-3≤x≤时,求此函数的最大值和最小值.
解(1)由反比例函数的定义可知:解得,m=-2.
(2)因为-2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.
(3)因为在第个象限内,y随x的增大而增大,
所以当x=时,y最大值=;
当x=-3时,y最小值=.
所以当-3≤x≤时,此函数的最大值为8,最小值为.
例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.
(1)写出用高表示长的函数关系式;
(2)写出自变量x的取值范围;
(3)画出函数的图象.
解(1)因为100=5xy,所以.
(2)x>0.
(3)图象如下:
说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.
四、交流反思
本节课学习了画反比例函数的图象和探讨了反比例函数的性质.
1.反比例函数的图象是双曲线(hyperbola).
2.反比例函数有如下性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.
五、检测反馈
1.在同一直角坐标系中画出下列函数的图象:
(1);(2).
2.已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;
(2)当时,y的值;
(3)当x取何值时,?
3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.
4.已知反比例函数经过点A(2,-m)和B(n,2n),求:
(1)m和n的值;
(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0
教学目标:
1、借助正比例的意义理解反比例的意义,能根据反比例的意义正确判断两种量是否成反比例。
2、在小组合作学习过程中,掌握合作学习技能,体验合作学习的快乐。
教学过程:
一、创设情境,明确问题
同学们,昨天老师去幼儿园接小朋友,看见幼儿园的老师正在给小朋友们分饼干,想知道他们是怎么分的吗?我们一起去看一看:
人数(人)
1
2
3
4
5
块数(块)
3
6
9
12
15
每人分的块数(块)
3
3
3
3
3
仔细观察,从这个表中,你知道了什么?你知道表中的哪两种量成正比例吗?(说明理由)
说一说成正比例的两个量的变化规律。
师小明的妈妈要去银行换一些零钱,请你帮忙算一算,各换多少张:
面值(元)
1
2
5
10
20
张数(张)
20
总钱数(元)
二、探索新知,寻求规律
1、独立思考:出示表格,让学生自己观察,提出问题并解决问题。
2、小组合作,交流探讨问题。
要求:认真听取别人的意见,详细说明自己的观点,如果有不懂的地方要虚心求助,最重要的是要控制好自己的言行,小组长要协调好本组的合作过程。
3、汇报交流,发现规律。
4、教师小结,明确概念,呈现课题。
5、在理解概念的基础上增加记忆。
三、理解应用,巩固新知。
1、给车棚的地面铺上水泥砖,每块水泥砖的面积与所需数量如下:
没块水泥砖的面积(平方厘米)
500
400
300
数量(块)
600
750
1000
每块水泥砖的面积与所需数量是否成反比例?为什么?
2、下表中x和y两个量成反比例,请把表格填写完整。
x
2
40
y
5
0.1
3、判断下面每题中的两种量是否成反比例,并说明理由。
(1)全班的人数一定,每组的人数和组数。
(2)圆柱的体积一定,圆柱的底面积和高。
(3)书的总页数一定,已经看的页数和未看的页数。
(4)圆柱的侧面积一定,它的底面周长和高。
(5)、六(1)班学生的出席人数与缺席人数。
4、下面各题中的两种量是不是成比例?如果成比 例,成什么比例?
(1)、订阅《小学生天地》的份数和总钱数。
(2)、小新跳高的高度与他的身高。
(3)、平行四边形的面积一定,底和高。
(4)、正方行的边长与它的周长。
(5)、三角形的面积一定,底和高。
5、生活中还有哪些成反比例关系的量?
四、课堂总结,拓展延伸
1、这节课学会了什么知识?反比例的意义是什么?
2、这节课你与小组同学合作的怎么样?以后应该怎么做?
教学目标:
1、知识与能力目标:(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。
(2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性
2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。
3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。
教学重点和难点
重点:进一步掌握反比例函数的概念、图像、性质并正确运用。
难点:反比例函数性质的灵活运用。数形结合思想的应用。
教学方法:探究——讨论——交流——总结
教学媒体:多媒体课件。
教学过程:
一、知识梳理:
同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识?
课件展示:
1.反比例函数的意义
2.反比例函数的图象与性质
3.利用反比例函数解决实际问题
二、合作交流、解读探究
(一)与反比例函数的意义有关的问题
课件展示:
忆一忆:什么是反比例函数?
要求学生说出反比例函数的意义及其等价形式
巩固练习:课件展示:
1.下列函数中,哪些是反比例函数?
(1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4
2、写出下列问题中的函数关系式,并指出它们是什 么函数?
⑴当路程s一定时,时间t与平均速度v之间的关系.
⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系.
3.若y= 为反比例函数,则m=______
4.若y=(m-1) 为反比例函数,则m=______ .
(二)运用反比例函数的图象与性质解决问题
1.反比例函数的图象是
2.图象性质见下表(课件展示):
3.做一做(课件展示)
(1)函数y= 的图象在第______象限,当x<0时,y随x的增大而______ .
(2)双曲线y= 经过点 (-3 ,______ ).
(3)函数y= 的图象在二、四象限内,m的取值范围是______ .
(4)若双曲线经过点(-3 ,2),则其解析式是______.
(5)已知点A(-2,y1),B(-1,y2) C(4,y3)都在反比例函数y= 的`图象上,则y1、y2 与y3的大小关系(从大到小)为____________ .
(三)综合运用(课件展示)
一次函数的图像y=ax+b与反比例函数y= 交与M(2,m)、N(-1,-4)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像写出反比例函数的值大于一次函数的值的X 的取值范围
三、随堂练习
见课件
四、小结
1.反比例函数的意义
2.反比例函数的图象与性质
五、作业:配套练习22页21、22题
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号