日期:2021-06-01
这是相交线教案人教版,是优秀的数学教案文章,供老师家长们参考学习。
教学目标:
1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力
2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题
教学重点与难点:
重点:邻补角与对顶角的概念.对顶角性质与应用
难点:理解对顶角相等的性质的探索
教学设计:
一.创设情境:激发好奇,观察剪刀剪布的过程,引入两条相交直线所成的角
在我们的生活中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题
教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?
教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题
二.认识邻补角和对顶角,探索对顶角性质
1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流。当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达;有公共的顶点O,而且的两边分别是两边的反向延长线
2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?
(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)
3学生根据观察和度量完成下表:
两条直线相交所形成的角分类位置关系数量关系
教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗
4.概括形成邻补角、对顶角概念和对顶角的性质
三.初步应用
练习:
下列说法对不对
(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角
(2)邻补角是互补的两个角,互补的两个角是邻补角
(3)对顶角相等,相等的两个角是对顶角
学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象
四.巩固运用
例题:如图,直线a,b相交,,求的度数。
[巩固练习]
(教科书5页练习)
已知,如图,,求:的度数
[小结]邻补角、对顶角.
[作业]课本P9-1,2P10-7,8
[备选题]
一、判断题:
如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( )
两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( )
二、填空题
1如图,直线AB、CD、EF相交于点O,的对顶角是 ,的邻补角是若:=2:3,,则=
2如图,直线AB、CD相交于点O,则
[教学目标]
1.
通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力
2.
在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题
[教学重点与难点]
重点:邻补角与对顶角的概念.对顶角性质与应用
难点:理解对顶角相等的性质的探索
[教学设计]
一.创设情境
激发好奇
观察剪刀剪布的过程,引入两条相交直线所成的角
在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。
观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题
教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?
教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,
二.认识邻补角和对顶角,探索对顶角性质
1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达
;
有公共的顶点O,而且的两边分别是两边的反向延长线
2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?
(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)
3学生根据观察和度量完成下表:
两条直线相交
所形成的角
分类
位置关系
数量关系
教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗
4.概括形成邻补角、对顶角概念和对顶角的性质
三.初步应用练习:
下列说法对不对
(1)
邻补角可以看成是平角被过它顶点的一条射线分成的两个角
(2)
邻补角是互补的两个角,互补的两个角是邻补角
(3)
对顶角相等,相等的两个角是对顶角
学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象
四.巩固运用
例题:如图,直线a,b相交,,求的度数。
[巩固练习](教科书5页练习)
已知,如图,,求:的度数
[小结]
邻补角、对顶角.
[作业]课本P9-1,2P10-7,8
[备选题]
一判断题:
如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( )
两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( )
二填空题
1如图,直线AB、CD、EF相交于点O,的对顶角是
,的邻补角是
若:=2:3,,则=
2如图,直线AB、CD相交于点O
则
学习目标:
知识目标
了解两条直线互相垂直的概念;
2.知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。
能力目标
培养提高学生 观察、理解能力,几何语言能力、画图能力,抽象思维能力。运用知识解决实际问题能力。
德育目标
培养学生 辩证唯物主义思想及不断发现,探索新知识的精神。
情感目标
通过创设情境,利用变式训练,多种教学 手段来激发学生 学习兴趣,给学生 创造成功的机会,使他们爱学、会学、学会,营造学生 可持续发展的机会。
重点:两直线互相垂直的有关性质 难点:过直线上(外)一点作已知直线的垂线
教具:多媒体、投影仪、自制的可旋转的两根木条等
[学习目标是从基础知识教学 、基本技能训练、数学能力培养和德育目标四个方面,依据《数学课程标准》关于“垂线”的具体教学 要求和各种教学 原则,以及本节的教材内容与学生 的实际确定的。]
互究策略:(教学 流程)
一、背景1.[生活背景]旗杆与旗台边缘线的垂直关系;红十字会标志;
2.[知识背景]两条直线相交,产生两对对顶角,且对顶角相等。
二、师生互究1.创设问题情境
师:这是两幅草坪的图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图那幅更漂亮、更匀称。这是什么原因?[教师 用多媒体或投影仪展示]
[学生 众说纷纭,教师 应给予充分的肯定]
师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。生:……
师:让我们共同探索图甲这种特殊情况。
[借助于教具,模型,实物,图形及幻灯等教学 手段,使学生 先得到直观的感性认识,培养学生 从感性到理性的认识方式]
2.回顾再现:对顶角相等
两条直线相交只有一个交点。如图(1),直线AB和CD相交,交点为点O,有四个小于平角的角,且∠AOC=∠BOD,∠AOD=∠BOC
1. 提高:教师 演示自制教具,要求学生 观察当一根木条绕着另一根木条旋转是的变化情况,并用数学语言进行描述。
[教师 应鼓励学生 大胆描述自己的观察结果,并及时予以肯定。]
师:两直线相交,有两组分别相等的角,当一个角等于90°时,其它三个角有什么变化?可能产生四个相等的角吗?如图(2)[同时演示教具] 将直线CD绕着点O旋转,当∠BOD=90°时,∠AOC、∠AOD、∠BOC是多少度?生:……师:你们的依据是什么?
生: ……(用度量的方法;利用对顶角相等;互补的概念……学生 回答过程中,只要有道理就应予以鼓励)[这里希望在感性认识的基础上进行抽象概念的教学 ,培养学生 的抽象思维能力。]
2. 提升:[教师 引导学生 归纳]两条直线互相垂直:两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。
师:ⅰ)如图(2),直线AB和CD相交,交点为O,∠BOC=90°,记为AB⊥CD,垂足为点O。“AB⊥CD”读作“AB垂直于CD”或“CD垂直于AB”。
ⅱ)两条直线AB⊥CD, 垂足为点O,则∠AOC=∠AOD=∠BOC=∠BOD=90°
[实现数学的三大语言:文字语言,符号语言,几何语言之间的切换,并板书以突出其重要性]
5.再探究:师:请同学们举一些日常生活中互相垂直的直线的例子;生:……
[希望实现将数学知识在实际生活中的运用,并为后继数学知识增加感性认知]
师:请同学们用三角尺或量角器:
ⅰ)经过直线AB外一点P,画直线与已知直线AB垂直,且讨论这样的垂线有几条?
ⅱ)设这一点在直线AB上,重作上述过程。
[学生 分组或独立探索,教师 巡视指导]
[教师 引导学生 归纳结论]:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
[通过学生 动手操作画图,教师 在巡视中及时指出、纠正学生 发生的错误,训练学生 以严谨的科学态度研究问题、解决问题。]
师:请同学们互相门交流且简单描述一下,上述结论用三角尺的作法过程和“有且只有”的含义
[学生 讨论交流,教师 巡视] 师:[引导归纳]
a)、靠已知直线——找待过定点——画已知直线的垂线(一靠、二过、三垂直)。
b)、有一条并且只有一条没有第二条。
师:如图(5)请同学们相互比试,谁能更快地过直线CD上一点P作直线AB的垂线。并在小组间进行交流。
[探究性活动是《数学课程标准》的一个重要举措,并为培养学生 的创新意识提供了一些机会。“做一做”进行小组交流,一方面是为了加强对学生 动手操作能力的培养,同时也培养了学生 的合作意识和竞争意识,使学生 更深入理解垂直、垂线的概念。]
6.学生 探索:[学生 分小组测量,讨论,归纳]如图(6)所示,点A与直线DC上各点的距离长短一样吗?谁最短?它具备什么条件?[抽小组代表发言]
7.教师 :[总结 归纳]只有线段AB最短,且当AB与DC垂直时,才最短。
[教师 引导学生 得出线段AB特征:A为直线外一点,B为过A向直线DC所引的垂线的垂足,]
提高为:线段AB的长度就是点A到直线DC的距离。
思考:点A到直线DC的距离与点A到点C的距离有什么区别?
点A到直线DC的距离:线段AB的长度,A为直线外一点,B为过A向直线DC所引的垂线的垂足;点A到点C的.距离:两点之间线段的长度。
[从生活实际,从学生 感兴趣,熟悉的问题引导学生 发现垂线的第二个性质,提高学生 学数学的兴趣,并适当体现学数学——用数学——发现数学的思想。]
三、较量1.P170 1 、 2 、 3 2.应用:[使学生 在相互竞争中,实践应用本节课的知识,分享获取成功的喜悦,并促进学生 积极向上的心理品质]
⑴、某村庄在如图(7)所示的小河边,为解决村庄供水问题,需把河中的水引到村庄A处,在河岸CD的什么地方开沟,才能使沟最短?画出图来,并说明道理。
⑵、教材P170 做一做⑶、体育课上怎样测量跳远成绩。
[学以致用,学生 做个小小设计师,兴趣盎然,把这节课引入高潮。]
四、分享:
a) 两条直线互相垂直的概念;
b) 如何过已知直线上或已知直线外的一点作唯一的垂线。
五、探索:① P174 1 、 2
③ 学校的位置如图(8)所示,请设计出学校到两条公路的最短距离的方案,并在图上标出来,并说明理由。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号