当前位置:首页 > 教案教学设计 > 数学教案

多边形的内角和教学设计

日期:2021-05-16

这是多边形的内角和教学设计,是优秀的数学教案文章,供老师家长们参考学习。

多边形的内角和教学设计

多边形的内角和教学设计第1篇

一、教学目标

【知识与技能】

掌握多边形内角和公式,并能够运用公式正确的求出多边形的内角和。

【过程与方法】

通过对“多边形内角和公式”的探究,提析问题、解决问题的能力,同时充分领会数学转化思想。

【情感态度与价值观】

通过公式的猜想、归纳、推断一系列过程,体验数学活动充满着探索性和创造性,增强学习数学的兴趣和勇于创新的精神。

二、教学重难点

【重点】

探究多边形内角和的公式。

【难点】

多边形内角和公式的推导过程。

三、教学过程

(一)导入新课

老师周末在逛广场的时候,发现广场中心是一个五边形,大家看一下PPT,老师将照片拍了下来,你们能够帮老师算出,这个五边形的内角和是多少度么?

(二)探究新知

1.探索四边形、五边形、六边形的内角和

师生活动:教师引导学生分析问题解决的思路——如何利用三角形的内角和求出四边形的内角和,进而发现:只需连接一条对角线,即可将一个四边形分割为两个三角形。学生说出证明过程,教师板书。

追问1:这里连接对角线起到什么作用?

追问2:类似地,你能知道五边形、六边形…n边形的内角和是多少度吗?

追问3:如图,从六边形的一个顶点出发,可以作几条对角线?它将六边形分为几个三角形?六边形的内角和等于180°×?

师生活动:学生类比四边形、五边形内角和的研究过程回答追问3.

2.探索并证明n边形的内角和公式

问题3:你能从四边形、五边形、六边形的内角和的研究过程获得启发,发现多边形的内角和与边数的关系吗?能证明你发现的结论吗?

师生活动:学生独立思考后,回答出n边形的内角和等于(n-2)×180°,然后师生共同分析证明思路。证明过程如下:

从n边形的一个顶点出发,可以作(n-3)条对角线,它们将n边形分成(n-2)个三角形,这(n-2)个三角形的内角和就是n边形的内角和,所以n边形的内角和等于(n-2)×180°

追问1:通过前面的探究,填写下面的表格:

师生活动:师生共同填写表格,得出规律:多边形的边数增加1,内角和就增加180°。

追问2:前面我们通过从一个顶点出发作对角线,将多边形分割成几个三角形,进而探究出n边形的内角和,那么,是否还有其他分割多边形的方法呢?

师生活动:师生自主探究,小组讨论交流。并让小组代表板演并讲解思路。学生可能有以下几种方法:

方法1:如图,在n边形内任取一点O,连接OA1,OA2,OA3,……OAn,则n边形被分成了n个三角形,这n个三角形的内角和为n×180°,以O为公共顶点的n个角的和是360°,所以n边形的内角和是n×180°-360°,即(n-2)×180°。

方法2:如图,在A1A2上任取一点P,连接PA1,PA2,PA3,……PAn,则n边形被分成了(n-1)个三角形, 这(n-1)个三角形的内角和为(n-1)×180°, 以P为公共顶点的(n-1)个角的和是180°,所以n边形的内角和是(n-1)×180°-180°,即(n-2)×180°。

(三)深化新知

例1:如果一个四边形的对角互补,那么另一组对角有什么关系?

(四)巩固提高

1.求八边形的内角和是多少度?

2.已知一个多边形的所有内角都是120°,则这个多边形是几边形?

(五)小结作业

小结:教师与学生一起回顾本节课所学的主要内容,并请学生回答一下问题:

(1)本节课学习了哪些主要内容?

(2)我们是怎样得到多边形内角和公式的?

(3)在探究多边形内角和公式的过程中,连接对角线起到什么作用?

作业:1.通过本节课的学习,你还能不能想到其他方法推导出多边形的内角和公式?

2.思考多边形的外角和是多少?

四、板书设计

五、教学反思

多边形的内角和教学设计第2篇

  教学目标

  知识与技能

  掌握多边形内角和公式及外角和定理,并能应用.

  过程与方法

  1.经历把多边形内角和问题转化为三角形内角和问题的过程,体会转化思想在几何中的应用,同时体会从特殊到一般的认识问题的方法;

  2.经历探索多边形内角和公式的过程,尝试从不同角度寻求解决问题的方法.训练学生的发散性思维,培养学生的创新精神.

  情感态度价值观

  通过猜想、推理等数学活动,感受数学充满着探索以及数学结论的确定性,提高学生学习数学的热情.

  重点

  多种方法探索多边形内角和公式

  难点

  多边形内角和公式的推导

  教学流程安排

  活动流程

  活动内容和目的

  活动1学生自主探索四边形内角和

  活动2教师引导学生探索总结把四边形转化为三角形添加辅助线的基本方法

  活动3探索n边形内角和公式

  活动4师生共同研究递推法确定n边形内角和公式

  活动5多边形内角和公式的应用

  活动6小结

  作业

  从对三角形及特殊四边形(正方形、长方形)内角和的认识出发,使学生积极参加到探索四边形内角和的活动中.

  加深对转化思想方法的理解, 训练发散思维、培养创新能力.

  通过把多边形转化为三角形体会转化思想,感受从特殊到一般的数学思考方法.

  学生提高动手实操能力、突破“添”的思维局限

  综合运用新旧知识解决问题.

  回顾本节内容,培养学生的归纳概括能力.

  反思总结,巩固提高.

  课前准备

  教具

  学具

  补充材料

  教师用三角尺

  剪刀

  复印材料

  三角形纸片

  教学过程设计

  问题与情景

  师生行为

  设计意图

  [活动1、2]

  问题1.三角形的内角和是多少?

  与形状有关吗?

  问题2.正方形、长方形的内角和是多少?

  由此你能猜想任意凸四边形内角和吗?

  动脑筋、想办法,说明你的猜想是正确的.

  问题3添加辅助线的目的是什么,方法有没有什么规律呢?

  学生回答:

  三角形内角和是180°,与形状无关;正方形、长方形内角和是360°(4×90°),由此猜想任意凸四边形内角和是360°.

  学生先独立探究,再小组交流讨论.

  教师深入小组指导,倾听学生交流.对于通过测量、拼图说明的,可以引导学生利用添加辅助线的方法把四边形转化为三角形.

  学生汇报结果.

  ①过一个顶点画对角线1条,得到2个三角

  形,内角和为2×180°;

  ②画2条对角线,在四边形内部交于一点,得到4个三角形,内角和为4×180°-360°;

  ③若在四边形内部任取一点,如图,也可以得到相应的结论;

  ④这个点还可以取在边上(若与顶点重合,转化为第一种情况——连接对角线;否则如图4)

  内角和为3×180°-180°;

  ⑤点还可以取在外部,如图5、6.由图5,内角和为3×180°-180°;由图6,内角和为2×180°;

  教师重点关注:①学生能否借助辅助线把四边形分割成几个三角形;②能否借助辅助线找到不同的分割方法.

  教师总结:利用辅助线把四边形的内角和转化为三角形的内角和,体现了化未知为已知的转化思想. .以上这些方法同样适用于探究任意凸多边形的内角和.为方便起见,下面我们可以选用最简单的方法——过一点画多边形的对角线,来探究五边形、六边形,甚至任意n边形的内角和.

  通过回忆三角形的内角和,有助于后续问题的解决.

  从四边形入手,有利于学生探求它与三角形的关系,从而有利于发现转化的思想方法.

  通过动手操作寻找结论,让他们积极参加数学活动、主动思考、合作交流,体验解决问题策略的多样性.

  通过寻求多种方法解决问题,训练学生发散思维能力、培养创新意识.

  [活动3]

  问题4怎样求n边形的内角和?(n是大于等于3的整数)

  学生归纳得出结论:从n边形的一个顶点出发可以引(n-3)条对角线,它们将n边形分割成(n-2)个三角形,(凸)n边形的内角和等于(n-2)×180°.

  特点:内角和都是180°的整数倍.

  通过归纳概括得出任意凸多边形的内角和与边数关系的表达式,体会数形之间的联系,感受从特殊到一般的数学推理过程和数学思想方法.

  [活动4]

  每名同学发一张三角形纸片

  问题5一张三角形纸片只剪一刀,能不能得到一个四边形,在这一过程中内角发

  《多边形的内角和》公开课生了怎样的变化

  问题6由四边形得到五边形呢?

  依此类推能否猜想n边形内角和公式

  将三角形去掉一个角可以得到四边形,如图7,四边形内角和为

  180°+2×180°-180°=2×180°.

  每个图形都是前一个图形剪去一个三角形,每次操作内角和增加180°,n边形是三角形经过(n-3)次操作得到的,所以n边形内角和公式为(n-2)×180°

  (严谨的证明应在学习数学归纳法后)

  学生突破常规,学会逆向思维,变以往的“把多边形转化成三角形”为“把三角形转化成多边形”同样使问题得到解决

  [活动5]

  知道了凸多边形的内角和,它可以解决哪些问题呢?

  问题6:六边形的外角和等于多少?

  n边形外角和是多少?

  学生自己画图、思考.叙述理由:六边形的六个外角与六个内角构成6个平角,结合内角和公式,因此得到

  6×180°-(6-2)×180°=360°

  学生思考,回答.

  n边形中,每个顶点处的内角与一个外角组成一个平角,它们的和,即n边形内角和与外角和的和为n×180°,而内角和为(n-2)×180°,因此外角和为360°.

  利用内角和求外角和,巩固了内角和公式.

  如时间允许,此时还可补充利用“转角”求多边形外角和的方法,这样就变成了可以利用外角和来推导内角和,这又是一种逆向思维

  练习

  一个多边形各内角都相等,都等于150°,它的边数是 ,内角和是 .

  练习.解:(n-2)180=150n,n=12;

  或360÷(180-150)=12(利用外角和)

  150°×12=1800°.

  巩固内角和公式,外角和定理.

  [活动5]

  小结

  下面请同学们总结一下这节课你有哪些收获.

  学生自己小结,老师再总结.

  1. 多边形内角和公式(n-2)180°,外角和是360°;

  2. 由特殊到一般的数学方法、转化思想.

  学会总结,培养归纳概括能力.

  作业:

  课后思考题.

  一同学在进行多边形的内角和计算时,求得内角和为1125°,可能吗?

  当他发现错了之后,重新检查,发现少算了一个内角,你能求出这个内角是多少度?他求的是几边形的内角和吗?

  多边形内角和与不等式的综合应用题,一题多解,提高学生的综合应用能力.

  作业:

  解法1.设这是n边形,这个内角为x°,依题意:(n-2)180=1125+x

  x=(n-2)180-1125

  ∵0

  ∴0<(n-2)180-1125<180

  解得:

  ∵n是整数,

  ∴n=9.

  x=(9-2)180-1125=135

  注:方程(n-2)180=1125+x中有两个未知数,解法1用n表示x,根据x的取值范围解不等式组求出了n;如果用x表示n,你能解出来吗?

  解法2.设这是n边形,这个内角为x°,依题意:(n-2)180=1125+x

  ∵n是整数,

  ∴45+x是180的倍数.

  又∵0

  ∴45+x=180,x=135,n=9

  还可以根据内角和的特点,先求出内角和.

  解法3.设此多边形的内角和为x°,依题意:1125

  即:180×6+45

  ∵x是多边形内角和的度数

  ∴x是180的倍数

  ∴x=180×7=1260 边数=7+2=9,

  这个内角=1260°-1125°=135°

  解法4(极值法).设这是n边形,这个内角为x°,则0

  令x=0,得:n=,令x=180,得:n=

  ∴

多边形的内角和教学设计第3篇

教学建议

1.教材分析

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

2.教法建议

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的`问题要转化为简单的、已知的问题。

教学目标 :

1.使学生掌握四边形的有关概念及四边形的内角和定理;

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;

4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.

教学重点:

四边形的内角和定理.

教学难点 :

四边形的概念

教学过程 :

(一)复习

在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.

(二)提出问题,引入新课

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.

在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.

2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.

3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.

练习:课本124页1、2题.

4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.

5.四边形的对角线:

(四)四边形的内角和定理

定理:四边形的内角和等于 .

注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.

(五)应用、反思

例1 已知:如图,直线 ,垂足为B, 直线 , 垂足为C.

求证:(1) ;(2)

证明:(1) (四边形的内角和等于 ),

(2)

.

练习:

1.课本124页3题.

2.如果四边形有一个角是直角,另外三个角之比是1:3:6,那么这三个角的度数分别是多少?

小结:

知识:四边形的有关概念及其内角和定理.

能力:向学生渗透类比和转化的思想方法.

作业 : 课本130页 2、3、4题.

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号