当前位置:首页 > 教案教学设计 > 数学教案

反比例函数的认识教案

日期:2021-05-21

这是反比例函数的认识教案,是优秀的数学教案文章,供老师家长们参考学习。

反比例函数的认识教案

反比例函数的认识教案第1篇

课题 1.1反比例函数(1)

主备人

反比例函数教案及教学反思

陈春莲

知识与技能目标:①了解反比例函数的意义,理解反比例函数的概念;

②会求简单实际问题中的反比例函数解析式。

程序性目标:①从现实情景和学生的已有知识经验出发,讨论两个变量之间的相互关系,从而加深对函数概念的理解;

②使学生经历抽象反比例函数概念的过程中感悟反比例函数的概念。

情感与价值观目标:

①通过反比例函数概念的教学,使学生亲身经历知识的发生、发展的过程,培养学生的自主、合作的意识以及确立良好的认知观;

②学生通过对反比例函数的简单应用,使其初步形成数学的建模意识和能力。

教学重点

反比函数的概念

教学难点

例1涉及较多的《科学》学科知识,学生理解问题时有一定的难度。

教学媒体准备

教学设计过程

(①教学程序设计;②教法设计;③学法设计;④教材的处理与媒体。)

一、通过对两个变量之间的反比例关系的讨论和探究,使学生感受彼此之间特殊的一一对应关系,从而加深对函数概念的理解。

(创设情境

写出下列各关系:

1.长方形的长为6,宽y和面积x之间有什么关系?

2、长方形的面积为6,一边长x和另一边长y之间要有什么关系?)

两个相关联的量,一个量变化,另一个量也随着变化,如果两个变量的积是一个不为零的常数,我们就说这两个变量成反比例.借助正比例关系与反比例关系的类比,为问题的后续探究构建感性的氛围。

(请看下面几个问题:

探究:

问题1:北京到杭州铁路线长为1661km。一列火车从北京开往杭州,记火车全程的行驶时间为x(h),火车行驶的平均速度为y(km/h), (1)你能完成下列表格吗?

X(h)

12

15

17

22

y(km/h)

87.4

(2) Y与x成什么比例关系?能用一个数学解析式表示吗?)

(问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.

设它的一边长为x(米),请写出另一边的长y(米)与x的关系式.

根据矩形面积可知

x y=24,

即……)

使学生在体验探究的过程中,感受知识的形成过程,从而为知识的内化和正迁移创造了条件。

二、引导学生尝试自主、合作的学习,使学生经历知识构建和发现的过程,借此提出反比例函数的概念,培养了学生建模的意识、也发展了数学建模的能力。

(挑战自我

1、某住宅小区要种植一个面积为1000 平方米的矩形草坪,草坪长为 y米,宽为 x 米,则 y关于 x 的关系式为______;

2、已知北京市的总面积为1.68×104 平方千米,全市总人口为 n 人,人均占有土地面积为 s 平方千米,则s关于n的关系式为______;

3、京沪线铁路全程为1463 km,某列车平均速度为 v(km/h),全程运行时间为t(h),

则v关于t的关系式为______。)

构建互动、和谐的课堂教学氛围,使学生对反比例函数概念完成从感性体验到理性认知的过渡。

(发现:

一般地,若变量y与x反比例,则有xy=k(k为常数,k≠0 ),也就是y=。

归纳:上述几个函数都具有 y=的形式,一般地形如 y=(k是常数,k≠0)的函数叫做反比例函数(proportional function). k叫做反比例函数的比例系数,且反比例函数的自变量x的值不能为零。)

(练习

1、下列函数中,哪些是反比例函数?说出反比例函数的比例系数

⑴y = -3x; ⑵y = 2x+1; ⑶y=;⑷y =3(x-1)2+1;⑸y=(s是常数,s≠0);⑹ xy= - ;⑺ x=-5y ;)

利用学生对反比例函数概念的初步认识,引导学生借助自主练习,进一步加大学生对该概念的正迁移力度。

三、利用阿基米德的“撬动地球”的.历史故事,结合了学生的心理发展特点,很好的激发了学生对问题探究的兴趣。我们常说,于其让学生“苦学”,不如让学生“乐学”。

创设一种欲罢不能的心理氛围,从而使学生形成了问题探究的动机。进一步培养学生分析问题、解决问题的数学建模能力。

(背景知识

给我一个支点,我可以撬动地球!

——阿基米德)

(【例1】如图,阻力为1000N,

阻力臂长为5cm.

设动力y(N),动力臂为x(cm)

(图中杠杆本身所受重力略去不计。杠杆平衡时:动力动力臂=阻力阻力臂)

(1)求y关于x的函数解析式。

这个函数是反比例函数吗?如果是,请说出比例系数;

(2)求当x=50时,函数y的值,并说明这个值的实际意义;

(3)利用y关于x的函数解析式,

说明当动力臂长扩大到原来的n倍时,

所需动力将怎样变化?)

例题1涉及较多的《科学》学科的知识,学生在理解问题的背景时

有一定的难度,是本节教学的难点,教师在给出例题以前,有必要介绍一下“杠杆原理”,借助多媒体的教学辅助作用,使问题的出示显得活泼、直观,增强了问题的趣味性,从而更好的促使学生对问题的体验、探究。

(回顾与思考

练1. 一个三角形,一边长为 x cm,这边上的高为 y cm,它的面积为 25 cm2.求 (1) y 关于x的函数关系式,并判断是什么函数?(2)自变量x的取值范围 (3) 当 y = 10 时 x 的值.

练2.一个矩形的面积是20cm2,相邻的两条边长为xcm和y cm,那么变量y是x的函数吗?是反比例函数吗?为什么?

练3.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?)

在一次引导学生通过对以上问题的回顾与思考,更有效的促使学生亲历知识发生和发展的过程。很好的紧扣了本课时的过程性教学目标。

(课内练习:

1、已知反比例函数 y=kx-,

⑴说出比例系数;

⑵求当x=‐10时函数的值;

⑶求当y= 2时自变量x的值。

2、设面积为10cm的三角形的一边长为a(cm),这条边上的高为h(cm),

⑴求h关于a的函数解析式及自变量a的取值范围;

⑵ h关于a的函数是不是反比例函数?如果是,请说出它的比例系数

⑶求当边长a=25cm时,这条边上的高。 )

应该说,本课时的教法设计能很好的结合学生的心理发展特点和规律、结合学生的认知水平和经验、结合学生发展的能力要求。应该真正确立“以人为本”的教学理念。课堂教学中情景、例题、互动练习的设计;及多媒体的应用无不体现了这样的要求。

四,借助学生自主进行的课时及所学问题的小结,辅之以教师对反馈问题的设计,应该在培养学生良好的思维品质(反思),在培养学生对问题看法的自我校正、自我反馈的意识和能力有一定的作用。

(通过这节课的学习,你有什么收获?)

(交流反思 :

本堂课,我们讨论了具有什么样的函数是反比例函数,一般地,形如y=(k是常数,k≠0)的函数叫做反比例函数(proportional function).

k叫做反比例函数的比例系数,其中反比例函数的自变量x的值不能为零。)

(检测反馈

1.分别写出下列问题中两个变量间的函数关系式,指出哪些是正比例函数,哪些是反比例函数,哪些既不是正比例函数也不是反比例函数?

(1)小红一分钟可以制作2朵花,x分钟可以制作y朵花;

(2)体积为100cm3的长方体,高为hcm时,底面积为Scm2;

(3)用一根长50cm的铁丝弯成一个矩形,一边长为xcm时,面积为ycm2;

(4)小李接到对长为100米的管道进行检修的任务,设每天能完成10米,x天后剩下的未检修的管道长为y米.)

《反比例函数的意义》教学反思

昆阳二中陈春莲

《反比例函数的意义》教学反思:首先简单复习了一次函数、正比例函数的表达式,目的是想让学生清楚每种函数都有其特有的表达式,对反比例函数表达式的总结作了一个铺垫。其次利用题组(一)中的三个题目列出了

v=(1)及教学反思----------陈春莲" TITLE="1.1反比例函数(1)及教学反思----------陈春莲" />,xy=k(k为常数,k≠0 ),也就是y= 。s=(1)及教学反思----------陈春莲" TITLE="1.1反比例函数(1)及教学反思----------陈春莲" />

三个表达式,当让学生观察这三个表达式与以前我们所学的y=kx+b和y=kx有什么联系时,居然有很多同学认为它们和正比例函数类似,当时在课堂上对于这个问题的处理过于仓促,现在想来应注意细节问题。利用题组

(二)对反比例函数的三种表示方法进行巩固和熟悉。

例题非常简单,在例题的处理上我注重了学生解题步骤的培养,同时通过两次变式进一步巩固解法,并拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题,(在上学期曾有过类似问题的,由于时间的久远学生不是很熟悉)但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。

题组(三)在本节既是知识的巩固又是知识的检测,通过这组题目的处理,发现学生对本节知识的掌握还可以。从整体来看,时间有点紧张,小结很是仓促,而且是由老师代劳了,没有让学生来谈收获,在这点有些包办的趋势。

虽然在题目的设计和教学设计上我注重了由浅入深的梯度,但有些问题的处理方式不是恰到好处,有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性。总之,我会在以后的教学中注意细节问题的。

还希望数学组的老题多提宝贵的意见。谢谢了!

反比例函数的认识教案第2篇

备课过程,我认真研读教材,认为本节课重点和难点就是掌握反比例函数的概念,以及如何与一次函数及一次函数中的正比例函数的区别。所以,我在讲授新课前安排了对“函数”、“一次函数”及“正比例函数”概念及“一次函数”和“正比例函数”一般式的复习。

为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。

情境设置:

汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。

(1)你能用含v的代数式来表示t吗?

(2)时间t是速度v的函数吗?

设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。

为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。

一般式变形:(其中k均不为0)

通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。

为加深难度,我又补充了几个练习:

1、为何值时,为反比例函数?

2是的反比例函数,是的正比例函数,则与成什么关系?

关于课堂教学:

由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。

在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。

对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。

而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。

经验感想:

1、课前认真准备,对授课效果的影响是不容忽视的。

2、教师的精神状态直接影响学生的精神状态。

3、数学教学一定要重概念,抓本质。

4、课堂上要注重学生情感,表情,可适当调整教学深度。

反比例函数的认识教案第3篇

教学目标

(一)教学知识点

1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.

2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

(二)能力训练要求

结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.

(三)情感与价值观要求

结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.

教学重点

经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

教学难点

领会反比例函数的意义,理解反比例函数的概念.

教学方法

教师引导学生进行归纳.

教具准备

投影片两张

第一张:(记作§5.1A)

第二张:(记作§5.1B)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号