当前位置:首页 > 教案教学设计 > 数学教案

反比例函数教案人教版

日期:2021-05-11

这是反比例函数教案人教版,是优秀的数学教案文章,供老师家长们参考学习。

反比例函数教案人教版

反比例函数教案人教版第1篇

一、教学目标:

【知识与技能】

理解并掌握反比例函数的概念,能判断一个给定的函数是否为反比例函数,会根据已知条件,求出反比例函数的解析式。

【过程与方法】

通过探索现实生活中数量间的反比例关系,体会和认识反比例函数式刻画现实世界中特定数量关系的一种数学模型,进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化的观点。

【情感态度价值观】

经历反比例函数的形成过程、体验函数是描述变量间对应关系的重要数学模型,培养观察、推理、分析的能力和合作交流的意识、体验数形结合的思想。

二、教学重难点

【教学重点】

反比例函数的概念的形成过程

【教学难点】

反比例函数的概念的形成过程

三、教学过程

(一)引入新课

1.小明家到学校约5千米,在他骑车上学的过程中,你能找出其中变化的量与不变的量吗?

2.你能表示出上述过程中几个量之间的关系吗?

(二)探索新知

1.利用所列关系式,填写下表:

2.你有什么发现?

3.观察所列式子的特征,你能仿照关系式自编一道类似的题目吗?

4.思考讨论

用函数关系式表示下列问题中两个变量之间的关系:

(1)一个面积为6400m2的长方形的长a(m)随b(m)的变化而变化;

(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;

(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;

(4)实数m与n的积为-200,m 随n的变化而变化.

概念归纳:

一般地,形如 y=k/x(k为常数,k≠0)的函数叫做反比例函数,其中x是自变量,y是x的函数,k是比例系数。

①反比例函数的自变量x的取值范围是不等于0的一切实数。

②反比例函数的自变量y的取值范围是不等于0的一切实数。

(三)课堂练习

(1)每人写三个反比例函数,请同桌指出其中k的值.

(2)小组讨论:举出实际生活学习中具有反比例关系的例子。

并列出函数关系式。

(四)小结作业

课堂小结:教师引导学生总结本节课主要内容

课后作业:之前我们知道一次函数的图像是一条直线,请你课后参考以前知识,讨论反比例函数的图像?

四、板书设计

五、课后反思(略)

反比例函数教案人教版第2篇

  知识技能目标

  1.理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

  2.利用反比例函数的图象解决有关问题.

  过程性目标

  1.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

  2.探索反比例函数的图象的性质,体会用数形结合思想解数学问题.

  教学过程

  一、创设情境

  上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质.

  二、探究归纳

  1.画出函数的图象.

  分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0.

  解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

  2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.

  3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.

  上述图象,通常称为双曲线(hyperbola).

  提问这两条曲线会与x轴、y轴相交吗?为什么?

  学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).

  学生讨论、交流以下问题,并将讨论、交流的结果回答问题.

  1.这个函数的图象在哪两个象限?和函数的图象有什么不同?

  2.反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

  3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

  反比例函数有下列性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

  注1.双曲线的两个分支与x轴和y轴没有交点;

  2.双曲线的两个分支关于原点成中心对称.

  以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

  在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.

  在问题2中反映了在面积一定的情况下,饲养场的`一边越长,另一边越小.

  三、实践应用

  例1若反比例函数的图象在第二、四象限,求m的值.

  分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值.

  解由题意,得解得.

  例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限.

  分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx-k中,k<0,可知,图象过二、四象限,又-k>0,所以直线与y轴的交点在x轴的上方.

  解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx-k的图象经过一、二、四象限.

  例3已知反比例函数的图象过点(1,-2).

  (1)求这个函数的解析式,并画出图象;

  (2)若点A(-5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

  分析(1)反比例函数的图象过点(1,-2),即当x=1时,y=-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

  (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上.

  解(1)设:反比例函数的解析式为:(k≠0).

  而反比例函数的图象过点(1,-2),即当x=1时,y=-2.

  所以,k=-2.

  即反比例函数的解析式为:.

  (2)点A(-5,m)在反比例函数图象上,所以,

  点A的坐标为.

  点A关于x轴的对称点不在这个图象上;

  点A关于y轴的对称点不在这个图象上;

  点A关于原点的对称点在这个图象上;

  例4已知函数为反比例函数.

  (1)求m的值;

  (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

  (3)当-3≤x≤时,求此函数的最大值和最小值.

  解(1)由反比例函数的定义可知:解得,m=-2.

  (2)因为-2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.

  (3)因为在第个象限内,y随x的增大而增大,

  所以当x=时,y最大值=;

  当x=-3时,y最小值=.

  所以当-3≤x≤时,此函数的最大值为8,最小值为.

  例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.

  (1)写出用高表示长的函数关系式;

  (2)写出自变量x的取值范围;

  (3)画出函数的图象.

  解(1)因为100=5xy,所以.

  (2)x>0.

  (3)图象如下:

  说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.

  四、交流反思

  本节课学习了画反比例函数的图象和探讨了反比例函数的性质.

  1.反比例函数的图象是双曲线(hyperbola).

  2.反比例函数有如下性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.

  五、检测反馈

  1.在同一直角坐标系中画出下列函数的图象:

  (1);(2).

  2.已知y是x的反比例函数,且当x=3时,y=8,求:

  (1)y和x的函数关系式;

  (2)当时,y的值;

  (3)当x取何值时,?

  3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.

  4.已知反比例函数经过点A(2,-m)和B(n,2n),求:

  (1)m和n的值;

  (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0

反比例函数教案人教版第3篇

  教学目标:

  1、知识与能力目标:(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。

  (2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性

  2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。

  3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。

  教学重点和难点

  重点:进一步掌握反比例函数的概念、图像、性质并正确运用。

  难点:反比例函数性质的灵活运用。数形结合思想的应用。

  教学方法:探究——讨论——交流——总结

  教学媒体:多媒体课件。

  教学过程:

  一、知识梳理:

  同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识?

  课件展示:

  1.反比例函数的意义

  2.反比例函数的图象与性质

  3.利用反比例函数解决实际问题

  二、合作交流、解读探究

  (一)与反比例函数的意义有关的问题

  课件展示:

  忆一忆:什么是反比例函数?

  要求学生说出反比例函数的意义及其等价形式

  巩固练习:课件展示:

  1.下列函数中,哪些是反比例函数?

  (1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4

  2、写出下列问题中的函数关系式,并指出它们是什 么函数?

  ⑴当路程s一定时,时间t与平均速度v之间的关系.

  ⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系.

  3.若y= 为反比例函数,则m=______

  4.若y=(m-1) 为反比例函数,则m=______ .

  (二)运用反比例函数的图象与性质解决问题

  1.反比例函数的图象是

  2.图象性质见下表(课件展示):

  3.做一做(课件展示)

  (1)函数y= 的图象在第______象限,当x<0时,y随x的增大而______ .

  (2)双曲线y= 经过点 (-3 ,______ ).

  (3)函数y= 的图象在二、四象限内,m的取值范围是______ .

  (4)若双曲线经过点(-3 ,2),则其解析式是______.

  (5)已知点A(-2,y1),B(-1,y2) C(4,y3)都在反比例函数y= 的`图象上,则y1、y2 与y3的大小关系(从大到小)为____________ .

  (三)综合运用(课件展示)

  一次函数的图像y=ax+b与反比例函数y= 交与M(2,m)、N(-1,-4)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像写出反比例函数的值大于一次函数的值的X 的取值范围

  三、随堂练习

  见课件

  四、小结

  1.反比例函数的意义

  2.反比例函数的图象与性质

  五、作业:配套练习22页21、22题

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号