当前位置:首页 > 教案教学设计 > 数学教案

分式的基本性质教学准备

日期:2021-05-10

这是分式的基本性质教学准备,是优秀的数学教案文章,供老师家长们参考学习。

分式的基本性质教学准备

分式的基本性质教学准备第1篇

  一、教材分析

  1、教材的地位及作用

  “分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式” 的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。

  2、学生情况分析

  学习的过程是自我生成的过程,其基础是学生原有的知识。在学习本节课之前,学生原有的知识市分数的基本性质的运用。八年级学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定的归纳总结能力,那么如何让学生灵活运用分式的基本性质进行化简就是本节内容要突破的难点。

  3、教学重难点分析

  根据以上学习任务和学情分析,确定本节课的教学重难点如下:

  教学重点:理解并掌握分式的基本性质,对分式基本性质的理解及其初步运用。

  教学难点:灵活运用分式的基本性质,进行分式化简、变形。

  二、教学目标

  教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的,因此我确定本课教学目标是:

  1、了解分式的基本性质。灵活运用“性质”进行分式的变形。

  2、通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。

  3、通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的.的意识。

  三、教法分析

  1、教学方法

  基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

  根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。

  2、学法指导

  本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究—主动总结—主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索—发现—实践—总结的能力。

  因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

  四、教学准备

  多媒体课件,小黑板

  五、教学过程

  活动1:复习分数的基本性质

  在教学过程中,为了达到激活学生原有的知识,,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:

  1、下列分数是否相等?可以进行变形的依据是什么?

  2、分数的基本性质是什么?怎样用式子表示?

  老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质。

  设计意图:通过复习分数的通分、约分总结出分数的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。

  这里我通过问题情境的创设,引发学生的兴趣,由复习分数的基本性质自然过度到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础。

  活动2:类比得出分式的基本性质

  因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:

  1、类比分数的基本性质,你能猜想出分式有什么性质吗?

  2、你能用语言来描述分式的基本性质吗?

  3、类比分数的基本性质,在理解分式基本性质时应注意那几方面?

  老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质。

  设计意图:让学生自己运用类比的方法发现分式的基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的。

  同时,我组织学生进行全班讨论、交流,通过互相补充以及教师适时的引导,学生们总结出:

  1、分式与分数有相同的形式,只是分式的分子和分母都是整式;

  2、分式其实就是用字母代替数得到的,即分式中的字母本身就代表某个数,因此分数的基本性质也应该适用于分式。

  在此基础上,我们进一步总结得到:

  1、分式的基本性质:

  分式的分子与分母同乘以(或除以)不为零的整式,分式的值不变。

  2、分式的基本性质中应该注意:

  (1)充分理解“同时”这个词的含义,它包含两层意义:分子、分母同时乘以或除以,同一个整式;

  (2)注意括号内的限制条件:M、N是不为零的整式,若M、N=0,则分式就没有意义了;

  (3)此性质的隐含条件是:分式 中,B≠0。

  设计意图:一方面检查学生对“性质”的认识程度,另一方面通过学生的思考与归纳,进一步加深对“性质”理解。

  我在这里的设计,主要原因是:

  1、运用类比思想让学生通过知识迁移学习新知,比教师讲授更能加深学生的理解。

  2、体验“类比”思想和方法,有利于学生学习能力的提高;

  3、学生的理解层次尚浅,需要教师适时的点拨与归纳,因此,提出问题时应引起学生的关注,强化对性质的理解。

  活动3:初步应用分式的基本性质

  课件展示例题,学生独立思考问题,然后小组讨论,老师巡堂给予指导,最后由学生总结出解题经验。

  六、教学设计说明

  这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。

分式的基本性质教学准备第2篇

分式的基本性质是人教版八年级上册的内容,它是分式在这一章节的重点,本节的内容有三个部分:分式的基本性质、约分和通分。这一节教学效果的好坏,将会直接影响到整个分式的学习,课本是通过算术中分数的基本性质,用类比的方法给出分式的基本性质的。

在教分式的基本性质时,我从分数的基本性质入手,以一些简单的练习题为例,复习回顾分数的基本性质:分子和分母同时乘(或除以)不等于0的数,分数的值不变;强调如果是分数的分子和分母同时乘(或除以)等于0的数,分数就没有意义了。这也是为了学习分式的时候,字母在什么条件下,分式才有意义做好铺垫。用字母表示整式,通过应用类比分数的基本性质方法进行推论,得出分式的基本性质:分子和分母同时乘(或除以)不等于0的整式,分式的值不变。通过强化练习,加深对分式基本性质的理解和应用。

而约分和通分又都是根据分数的基本性质来学习的。但是在实际计算中,分式的约分要比分数的约分复杂得多,这是因为在这之前有的分式需要先对分子或分母进行因式分解,再找出最简公因式。因式分解这个知识点,这个班是上学期学的,我考虑到聋生的学习特点,有必要复习这方面的知识。重点讲两数平方差、两数完全平方和差、十字相乘法、提取公因式法等因式分解的方法,使得学生回忆起这方面的知识,再讲解分式的约分,学生就相对比较快的掌握。在教分式的约分时会涉及到:分子分母的公因式的确定,系数的最大公约数,相同字母的最低次幂;如果分子分母中有多项式,要降幂排列、因式分解等。还要特别强调约分的结果是最简分式或整式,学生做习题的时候往往会没有约完。

通分的内容,学生学得相对困难一点。教学时,还是要复习一下分数的通分方法,做一些分数通分的练习题。讲解通分时,关键点是要找出它们的最简公分母。而分式的通分要涉及到最简公分母的确定;各个分母系数的最小公倍数,所有字母(因式)的最高次幂;如果分母是多项式,还要对多项式进行因式分解,同样因式分解之前要进行降幂排列等等。要想熟练掌握,学生就必须多做练习。

因式分解无论是在分式的约分学习,还是在分式的通分学习都是很重要的。从学生在课堂练习中反映出:学生对因式分解的知识点掌握的还不牢固,分解因式或不彻底,或找不出公因式,遇到完全平方和差及平方差公式时,如果是用a、b字母代表的多项式时,有些学生看不出公式,所以分解因式需要加强练习。

通过强化练习,讲练结合,这个班的学生掌握还是很好的。

分式的基本性质教学准备第3篇

  一、成功之处

  1、合作交流中收益。

  通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。

  2、体现学生是学习的主人,学会了类比的思想方法,培养了语言表达和概括知识的能力。

  分数基本性质、分数约分的基础上,学习分式基本性质、分式约分方法。这一过程由学生自己学习、归纳,这样学生可以把新旧知识联系起来,学起来也不觉得困难,从而激起学生学习的积极性,同时也可以让学生体会到类比的思想。由学生自己归纳,体现了学生是学习的主人,可以培养学生的语言表达能力和总结知识的能力。

  3、培养学生观察、分析问题的能力,提高学生的逻辑思维。

  通过对等式的变形填空练习,让学生观察分子或分母变化,想分母或分子的变化,提高学生的思维能力。

  4、整节课下来,效果还不错。

  二、存在问题

  1、学生基础差(思维基础和知识基础都差),对因式分解的知识点忘记的比记住的.多,我花了将近三分之一的时间复习。当分母是多项式且能分解因式时,往往没想以先分解因式,或不会分解因式。

  2、约分的结果有的不是最简分式或整式(公因式没找完)。

  3、由于时间问题,练习做的不多。

  三、思考与措施

  1、完成教学任务与学生参与时间的矛盾。

  课改是“以学生发展为本”,而其中重要的一点是让学生参与教学活动。而在这堂课的有限时间内中,给予学生思考、讨论和发表意见的时间还不够充分,这也是教师平时教学中的困惑和矛盾,如何来协调的确值得探讨。

  2、要精练课堂教学过程,从而真正达到“课堂教学是为学生服务”这一宗旨。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号