当前位置:首页 > 教案教学设计 > 数学教案

湘教版三元一次方程组教案

日期:2021-12-15

这是湘教版三元一次方程组教案,是优秀的数学教案文章,供老师家长们参考学习。

湘教版三元一次方程组教案

湘教版三元一次方程组教案第 1 篇

  教学目标:

  1.了解三元一次方程组的概念.

  2.会解某个方程只有两元的简单的三元一次方程组.

  3.掌握解三元一次方程组过程中化三元为二元的思路.

  教学重点:

  (1)使学生会解简单的三元一次方程组

  (2)通过本节学习,进一步体会“消元”的基本思想.

  教学难点:针对方程组的特点,灵活使用代入法、加减法等重要方法.

  教学过程:

  一、创设情景,导入新课

  前面我们学习了二元一次方程组的解法,有些实际问题可以设出两个未知数,列出二元一次方程组来求解。实际上,有不少问题中会含有更多的未知数,对于这样的问题,我们将如何来解决呢?

  【引例】小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.

  提出问题:1.题目中有几个条件?2.问题中有几个未知量?3.根据等量关系你能列出方程组吗?

  【列表分析】

  (三个量关系) 每张面值 × 张数 = 钱数

  1元 x x

  2元 y 2y

  5元 z 5z

  合 计 12 22

  注 1元纸币的数量是2元纸币数量的4倍,即x=4y

  解:(学生叙述个人想法,教师板书)

  设1元,2元,5元的张数为x张,y张,z张.

  根据题意列方程组为:

  【得出定义】 (师生共同总结概括)

  这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.

  二、探究三元一次方程组的解法

  【解法探究】怎样解这个方程组呢?能不能类比二元一次方程组的`解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言)

  例1 .解方程组

  分析1:发现三个方程中x的系数都是1,因此确定用减法“消x”.

  分析2:方程③是关于x的表达式,确定“消x”的目标.

  【方法归纳】根据方程组的特点,由学生归纳出此类方程组为:

  类型一:有表达式,用代入法.

  针对上面的例题进而分析,例1中方程③中缺z,因此利用①、②消z,可达到消元构成二元一次方程组的目的.

  根据方程组的特点,由学生归纳出此类方程组

  类型二:缺某元,消某元.

  教师提示:当然我们还可以通过消掉未知项y来达到将“三元”转化为“二元”目的,同学可以课下自行尝试一下.

  三、课堂小结

  1.解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.

  即三元一次方程组 二元一次方程组 一元一次方程

  2.解题要有策略,今天我们学到的策略是:有表达式,用代入法;缺某元,消某元.

  四、布置作业

  1. 解方程组 你能有多少种方法求解它?

湘教版三元一次方程组教案第 2 篇

一、知识结构

二、重点、难点分析

本节教学的重点是幂的乘方与积的乘方法则的理解与掌握,难点是法则的灵活运用.

1.幂的乘方

幂的乘方,底数不变,指数相乘,即

(都是正整数)

幂的乘方

的推导是根据乘方的意义和同底数幂的乘法性质.

幂的乘方不能和同底数幂的乘法相混淆,例如不能把的结果错误地写成,也不能把的计算结果写成.

幂的乘方是变乘方为(底数不变,指数相乘的)乘法,如;而同底数幂的乘法是变(同底数的幂)乘为(幂指数)加,如.

2.积和乘方

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即

(为正整数).

三个或三个以上的积的乘方,也具有这一性质.例如:

3.不要把幂的乘方性质与同底数幂的乘法性质混淆.幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变).

4.同底数幂的乘法、幂的乘方、积的乘方的三个运算性质是整式乘法的基础,也是整式乘法的主要依据.对三个性质的数学表达式和语言表述,不仅要记住,更重要的是理解.在这三个幂的运算中,要防止符号错误:例如,;还要防止运算性质发生混淆:等等.

三、教法建议

1.幂的乘方导出的根据是乘方的意义和同底数幂的乘法性质.教学时,也要注意导出这一性质的过程.可先以具体指数为例,明确幕的乘方的意义,导出性质,如

对于从指数连加得到指数相乘,要根据学生情况多作一些说明.以为例,再一次说明

可以写成.这一点是导出幂的乘方性质的关键,务必使学生真正理解.在此基础上再导出性质.

2.使学生要严格区分同底数幂乘法性质与幂的乘方性质的不同,不能混淆.具体讲解可从下面两点来说明:

(1)牢记不同的运算要使用不同的性质,运算的意义决定了运算的性质.

(2)记清幂的运算与指数运算的关系:

(同底)幂相乘→指数相加(“乘”变“加”,降一级运算);

幂乘方→指数相乘(“乘方”变“乘法”,降一级运算).

了解到有关幂的两个重要性质都有“使原运算仅降一级运算”的规律,可使自己更好掌握有关性质.

3.在教学的各个环节中,注意启发学生,不仅掌握法则,还要明确为什么.三种运算法则全讲完之后,学生最易产生法则间的混淆,为了解决这个问题除叫学生熟记法则之外,在学生回答问题和写作业时,注意解题步骤,或及时发现问题,说明出现问题的原因;要注意防止两个错误:

(1)(-2xy)4=-24x4y4.

(2)(x+y)3=x3+y3.

幂的乘方与积的乘方(一)

一、教学目标

1.理解幂的乘方性质并能应用它进行有关计算.

2.通过推导性质培养学生的抽象思维能力.

3.通过运用性质,培养学生综合运用知识的能力.

4.培养学生严谨的学习态度以及勇于创新的精神.

5.渗透数学公式的结构美、和谐美.

二、学法引导

1.教学方法:引导发现法、尝试指导法.

2.学生学法:关键是准确理解幂的乘方公式的意义,只有准确地判别出其适用的条件,才可以较容易地应用公式解题.

三、重点·难点及解决办法

(-)重点

准确掌握幂的乘方法则及其应用.

(二)难点

同底数幂的乘法和幂的乘方的综合应用.

(三)解决办法

在解题的过程中,运用对比的方法让学生感受、理解公式的联系与区别.

四、课时安排

一课时.

五、教具学具准备

投影仪、胶片.

六、师生互动活动设计

1.复习同底数幂乘法法则并进行、的计算,从而引入新课,在探究规律的过程中,得出幂的乘方公式,并加以充分的理解.

2.教师举例进行示范,师生共练以熟悉幂的乘方性质.

3.设计错例辨析和练习,通过不同的题型,从不同的角度加深对公式的理解.

七、教学步骤

(-)明确目标

本节课重点是掌握幂的乘方运算性质并能进行较灵活的应用

(二)整体感知

幂的乘方法则的应用关键是判断准其适用的条件和形式.

(三)教学过程

1.复习引入

(1)叙述同底数幂乘法法则并用字母表示.

(2)计算:①②

2.探索新知,讲授新课

(1)引入新课:计算和和

提问学生式子、的意义,启发学生把幂的乘方转化为同底数暴的乘法.计算过程按课本,并注明每步计算的根据.

观察题目和结论:

推测幂的乘方的一般结论:

(2)幂的乘方法则

语言叙述:幂的乘方,底数不变,指数相乘.

字母表示:.(,都是正整数)

推导过程按课本,让学生说出每一步变形的根据.

(3)范例讲解

例1计算:

①②

③④

解:①

例2计算:

解:①原式

②原式

练习:①P971,2

②错例辨析:下列各式的计算中,正确的是()

A.B.

C.D.

(四)总结、扩展

同底数幂的乘法与幂的乘方性质比较:

幂运算种类指数运算种类

同底幂乘法乘法加法

湘教版三元一次方程组教案第 3 篇

教学目标

知识与技能

1.了解三元一次方程组的概念

2.会用“代入”“加减”把三元一次方程组化为“二元”、进而化为“一元”方程来解决.

过程与方法

在学习解二元一次方程组的基础上,通过洋葱微课的学习,掌握解三元一次方程组的解法.

情感态度与价值观

让学生感受把新知转化为已知、把复杂问题转化为简单问题这一化归思想,体会数学学习的方法.

教学重难点

教学重点

1.三元一次方程组的概念.

2.解三元一次方程组.

教学难点

根据方程组的特点,选择“代入”或“加减”进行求解.

课型:新授

课时:1课时

教学方法:观摩、引导、讲练

教具:洋葱学院(网页版)、粉笔

教学过程

导入新课

同学们,七年级的上册我们学了“一块钱”一次的方程,在前面我们又刚刚学完了“二块钱”一次的方程组,现在物价又上涨了,所以今天我们来学习“三块钱”一次的方程组.

讲授新课

播放洋葱微课《解三元一次方程组》[00:00—01:20].

目的:引导学生通过对视频内容学习,结合二元一次方程组的概念类比,得出三元一次方程组的概念.

教学效果:通过对视频内容的学习,使学生了解三元一次方程组的概念及本节课要解决的问题.

归纳:“方程组含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组”.

播放洋葱微课《解三元一次方程组》[01:20—07:28].

目的:类比前面所学二元一次方程组的解法,得到解三元一次方程组的整体思路——消元,并找出相应的消元方法.

教学效果:通过对视频内容的学习,类比前面所学二元一次方程组的解法,得到解三元一次方程组的求解思路:通过“代入”或“加减”进行消元,把“三元”转化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.

巩固练习:

教材(人教版)第106页练习第1题.

湘教版三元一次方程组教案第 4 篇

  教学目标:

  1.了解三元一次方程组的概念.

  2.会解某个方程只有两元的简单的三元一次方程组.

  3.掌握解三元一次方程组过程中化三元为二元的思路.

  教学重点:

  (1)使学生会解简单的三元一次方程组

  (2)通过本节学习,进一步体会“消元”的基本思想.

  教学难点:针对方程组的特点,灵活使用代入法、加减法等重要方法.

  教学过程:

  一、创设情景,导入新课

  前面我们学习了二元一次方程组的解法,有些实际问题可以设出两个未知数,列出二元一次方程组来求解。实际上,有不少问题中会含有更多的未知数,对于这样的问题,我们将如何来解决呢?

  【引例】小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.

  提出问题:1.题目中有几个条件?2.问题中有几个未知量?3.根据等量关系你能列出方程组吗?

  【列表分析】

  (三个量关系) 每张面值 × 张数 = 钱数

  1元 x x

  2元 y 2y

  5元 z 5z

  合 计 12 22

  注 1元纸币的数量是2元纸币数量的4倍,即x=4y

  解:(学生叙述个人想法,教师板书)

  设1元,2元,5元的张数为x张,y张,z张.

  根据题意列方程组为:

  【得出定义】 (师生共同总结概括)

  这个方程组有三个相同的未知数,每个方程中含未知数的.项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.

  二、探究三元一次方程组的解法

  【解法探究】怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言)

  例1 .解方程组

  分析1:发现三个方程中x的系数都是1,因此确定用减法“消x”.

  分析2:方程③是关于x的表达式,确定“消x”的目标.

  【方法归纳】根据方程组的特点,由学生归纳出此类方程组为:

  类型一:有表达式,用代入法.

  针对上面的例题进而分析,例1中方程③中缺z,因此利用①、②消z,可达到消元构成二元一次方程组的目的.

  根据方程组的特点,由学生归纳出此类方程组

  类型二:缺某元,消某元.

  教师提示:当然我们还可以通过消掉未知项y来达到将“三元”转化为“二元”目的,同学可以课下自行尝试一下.

  三、课堂小结

  1.解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.

  即三元一次方程组 二元一次方程组 一元一次方程

  2.解题要有策略,今天我们学到的策略是:有表达式,用代入法;缺某元,消某元.

  四、布置作业

  1. 解方程组 你能有多少种方法求解它?

 

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号