当前位置:首页 > 教案教学设计 > 数学教案

分数三元一次方程组的解法

日期:2021-12-16

这是分数三元一次方程组的解法,是优秀的数学教案文章,供老师家长们参考学习。

分数三元一次方程组的解法

分数三元一次方程组的解法第 1 篇

  【目的与要求】

  1.了解三元一次方程组的概念;熟练掌握简单的三元一次方程组的解法;能选择简便,特殊的解法解特殊的三元一次方程组.

  2.通过用代入消元法,加减消元法解简单的三元一次方程组的训练及选择合理,简捷的方法解方程组,培养运算能力.

  3.通过对方程组中未知数系数特点的观察和分析,明确三元一次方程组解法的主要思路是

  "消元",从而促成未知向已知的转化,培养和发展逻辑思维能力.

  4.通过三元一次方程组消元后转化为二元一次方程组,再消元转化为一元一次方程及将一些代数问题转化为方程组问题的方法的学习,培养初步运用转化思想去解决问题,发展思维能力.

  【知识要点】

  1.三元一次方程组的概念:

  含有三个未知数,每个方程的未知项的次数都是1,并且共有三个方程,这样的方程组叫做三元一次方程组.

  例如:

  都叫做三元一次方程组.

  注意:每个方程不一定都含有三个未知数,但方程组整体上要含有三个未知数.

  熟练掌握简单的三元一次方程组的解法

  会叙述简单的三元一次方程组的解法思路及步骤.

  思路:解三元一次方程组的基本思想仍是消元,其基本方法是代入法和加减法.

  步骤:①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;

  ②解这个二元一次方程组,求得两个未知数的值;

  ③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把

  这三个数写在一起的就是所求的三元一次方程组的解.

  灵活运用加减消元法,代入消元法解简单的三元一次方程组.

  例如:解下列三元一次方程组

  分析:此方程组可用代入法先消去y,把①代入②,得,

  5x+3(2x-7)+2z=2

  5x+6x-21+2z=2

  解二元一次方程组,得:

  把x=2代入①得,y=-3 ∴

  例2.

  分析:解三元一次方程组同解二元一次方程组类似,消元时,选择系数较简单的未知数较好.上述三元一次方程组中从三个方程的未知数的系数特点来考虑,先消z比较简单.

  解:①+②得,5x+y=26④

  ①+③得,3x+5y=42⑤

  ④与⑤组成方程组:

  解这个方程组,得

  把代入便于计算的方程③,得z=8

  注意:为把三元一次方程组转化为二元一次方程组,原方程组中的每个方程至少要用一次.

  能够选择简便,特殊的解法解特殊的三元一次方程组.

  例如:解下列三元一次方程组

  分析:此方程组中x,y,z出现的次数相同,系数也相同.根据这个特点,将三个方程

  的两边分别相加解决较简便.

  解:①+②+③得:2(x+y+z)=30

  x+y+z=15④

  再④-①得:z=5

  ④-②得:y=9

  ④-③得:x=1

  分析:根据方程组特点,方程①和②给出了比例关系,可先设x=3k,y=2k,由②得:z=y,∴z=×2k=k,再把x=3k,y=2k,z=k代入③,可求出k值,进而求出x,y,z的值.

  解:由①设x=3k,y=2k

  由②设z=y=×2k=k

  把x=3k,y=2k,z=k分别代入③,得

  3k+2k+k=66,得k=10

  ∴x=3k=30

  y=2k=20

  z=k=16

分数三元一次方程组的解法第 2 篇

  拓展也读:二元一次方程组的解法

  1.从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来

  2.把1.中所得的方程代入另一个方程,消去一个未知数.

  3.解所得到的一元一次方程,求得一个未知数的值.

  4.把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.

  (2)1.把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;

  2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;

  3.解这个一元一次方程,求得一个未知数的值

  4.把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数

  什么是二元一次方程

  含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。

  方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。

分数三元一次方程组的解法第 3 篇

  三元一次方程组的解法

  主要的解法就是加减消元法和代入消元法,通常采用加减消元法,若方程难解就用代入消元法,因题而异。其思路都是利用消元法逐步消元。

  步骤:

  ①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;

  ②解这个二元一次方程组,求得两个未知数的值;

  ③将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把这三个数写在一起的就是所求的三元一次方程组的解。

  拓展阅读:三元一次方程组的概念

  含有三个相同的未知数,每个方程中含未知数的项的次数都是一次,叫做三元一次方程组。方程组中,少于3个方程时,无法求所有未知数的解,这时叫做三元一次不定方程。

  三元一次方程是几年级学的

  三元一次方程是七年级学的。含有三个未知数并且未知数的的项的次数都是一,这样的整式方程叫做三元一次方程。共含有三个未知数的三个一次方程所组成的一组整式方程,叫做三元一次方程组。主要的解法就是加减消元法和代入消元法,通常采用加减消元法,若方程组难解就用代入消元法,因题而异(与二元一次方程的解法相似)。通过消元后转化为二元一次方程组,再消元转化为一元一次方程,再解答。

分数三元一次方程组的解法第 4 篇

1.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,这样的方程组就是三元一次方程组. 2.三元一次方程组的解法仍是用代入法或加减法消元,即通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程. 3.如何消元,首先要认真观察方程组中各方程系数的特点,然后选择最好的解法. 4.有些特殊方程组,可用特殊的消元方法,有时一下子可消去两个未知数,直接求出一个未知数值来.

1、3x-y+z=4.....(1);2x+3y-z=12......(2);x+y+z=6.......(3)

解:(1)+(2)=5x+2y=16.....(4);(2)+(3)=3x+4y=18.......(5),(4)*2-(5)==>7x=14,x=2,把x=2代入(4),得y=3,

把x=2,y=3代入(3),得z=1,所以x=2,y=3,z=1

2、4x-9z=17.....(1);3x+y+15z=18......(2);x+2y+3z=2.....(3)

解:(2)*2-(3)==>5x+27z=34......(4),(4)*5-(1)*4==>153z=51,z=3,把z=3代入(1),得x=11,

把x=11,z=3代入(3)得,y=-10,所以x=11,y=-20,z=3

3、4x+9y=12......(1);3y-2z=1.......(2);7x+5z=19/4.......(3)

解:(3)*4+(2)*10==>28x+30y=29......(4),(1)*7-(4)==>33y=35,y=35/33,把y=35/33分别代入(1),(2),x=27/44,

z=12/11,所以x=27/44,y=35/33,z=12/11.

解三元方程组,就是要多看例题和多动脑筋,找出解题规律,以上的题目可以多种解法,只要你熟练掌握她的解题思路。一般就是消元,三个未知数,变成两个,再变成一个。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号