当前位置:首页 > 教案教学设计 > 数学教案

三角形三边长度关系教案设计

日期:2021-12-19

这是三角形三边长度关系教案设计,是优秀的数学教案文章,供老师家长们参考学习。

三角形三边长度关系教案设计

三角形三边长度关系教案设计第 1 篇

【教学内容】

人教版义务教育教科书四年级数学下册第62页例4及相关练习。

【教材分析】

《三角形三边的长度关系》属于“空间与图形”的领域。这部分内容是在学生知道了三角形有三条边、三个角和具有稳定性的基础上探索三角形三边的关系。大家知道,在平面图形里,三角形是由三条线段围成的,但并不意味着任意三条线段都能围成三角形。所以掌握这部分内容,可以进一步丰富学生对三角形的认识和理解;它既是对所学知识的延续,又是后继学习的基础,在知识体系上具有承上启下的作用。

【教学目标】

1、知识与技能:结合具体的情境让学生通过动手操作、猜想验证及课件动态演示,探究发现三角形三边的长度关系;培养学生探索知识的能力和应用知识的能力。

2、 过程与方法:通过动手实践、观察、猜想、分析、验证等方法探究新知。

3、情感态度价值观:在探索、发现和应用的过程中感受数学与生活的密切联系,体会数学的价值,获得积极的情感体验。

【重难点、关键】

1、重点:经历探究过程,体会研究方法,发现三角形三边的长度关系。

2、难点:探究三角形三边的长度关系,应用三角形三边关系解决问题。

3、关键:(1)通过实物操作结合数据观察,引导学生初步猜想、感知三角形三边的长度关系。(2)借助多媒体课件动态演示验证,让学生理解并掌握三角形三边的长度关系。

【教具、学具准备】

1、教具:实物投影仪、多媒体课件。

2、学具:5根纸条(长度分别为3㎝、4㎝、6㎝、7㎝、10㎝)、表格。

【教学过程】

一、利用情境,引入探究

1、学生说说各自上学的方式以及需注意和考虑的问题。

2、小明从家去学校走哪一条路最近?为什么?

其中蕴含了什么样的数学知识呢?——引入新知探究。

二、小组合作,动手实践

1、明确要求:

(1)小组活动:从3cm、4cm、6cm、7cm、10cm的纸条中任选3根围一围,看能否围成三角形。

能围成三角形的3根纸条(单位:cm)

不能围成三角形的3根纸条(单位:cm)

(2)想一想:用3根纸条围三角形时应注意些什么?

2、学生操作,汇报交流,展示填写的表格数据。

三、观察数据,探究发现

1、观察数据,引导猜想。

(1)3根纸条能否围成三角形可能跟什么有关系?

(2)能围成三角形的3根纸条长度之间有怎样的关系?不能围成三角形的3 根纸条长度之间又有怎样的关系呢?

2、验证猜想,归纳发现。

(1)利用数据分析,验证猜想。

(2)多媒体课件动态演示,验证猜想。

(3)质疑,完善猜想。

(4)进一步验证猜想。

(5)归纳发现:

三角形任意两边的和大于第三边。

三角形两条较短的边的和大于较长的边。

四、运用知识,形成技能

1、练习提高:

(1)在能拼成三角形的各组小棒下面画“√”(课本第66页第7题)

学生判断,说明依据。

(2)用6根小棒,你能摆出几种三角形?(课本第66页第8题)

2、解决问题:

(1)运用所学知识解决情境图中的问题:小明从家去学校走哪条路最近?依据是什么?

(2)生活中的数学:

小明想给小狗做一个房子,房顶的框架是三角形,其中两根木条的长度分别是3分米、5分米、

① 另一根木条的长度可以是多少呢?(取整分米)

3分米 5分米 分米

② 你认为其中哪种更实惠美观?

五、回顾分享,课堂总结

学生分享自己的收获和感受。

【板书设计】

三角形三边的长度关系

三角形任意两边的和大于第三边

(三角形两条较短边的和大于较长边)

三角形三边长度关系教案设计第 2 篇

  教学目标:

  1.通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。

  2.引导学生参与探究和发现活动,经历操作、发现、验证的探究过程,培养学生自主探究、合作交流的能力。

  3.培养学生积极的学习态度和乐于探究的数学情感。

  教学重点:掌握“三角形任意两边长度的和大于第三边”的关系。

  教学难点:运用三角形三边的关系解决实际问题。

  教学准备:课件

  教学过程:

  一、谈话引入

  1.举例:生活中哪些物体的面是三角形的?

  2.复习三角形的各部分名称。

  提问:我们已经初步认识了三角形,关于三角形你已经知道了什么?

  引导学生回忆三角形的特点:有3条边、3个角、3个顶点、3条高……

  3.导入新课。

  三角形还有什么特点呢?今天这节课我们来探究三角形三条边的长度关系。(板书课题)

  二、交流共享

  1.课件出示教材第77页例题3:任意选三根小棒,能围成一个三角形吗?

  2.操作交流。

  (1)学生从自己准备的四根小棒中选出三根小棒来围一围,看看能不能围成三角形。

  教师巡视,了解学生的操作情况。

  (2)小组交流。

  布置学生将各自的操作情况在四人小组内进行交流。

  (3)全班交流,指名回答:你选择的是哪三根小棒,是否能围成一个三角形?

  学生回答预设:

  ①选择8cm、5cm、4cm三根小棒,能围成三角形。

  ②选择5cm、4cm、2cm三根小棒,能围成三角形。

  ③选择8cm、4cm、2cm三根小棒,不能围成三角形。

  ④选择8cm、5cm、2cm三根小棒,不能围成三角形。

  追问:第③种情况和第④种情况为什么不能围成三角形?

  引导学生认识到:第③种情况中,4cm、2cm这两根小棒太短了,三根小棒不能首尾相接;第④种情况中,5cm、2cm这两根小棒太短了,三根小棒不能首尾相接。

  教师小结:因为4cm+2cm8cm,5cm+2cm8cm,所以不能围成三角形。

  3.探索规律。

  师:我们已经知道了当两根小棒长度相加比第三根小棒短时,不能围成三角形。那能围成三角形的三根小棒的'长度又有什么特点呢?

  (1)布置探索任务。

  从围成三角形的三根小棒中任意选出两根,将它们的长度和与第三根比较,结果怎样?

  (2)学生独立探索。

  (3)交流汇报。

  第①种情况:4+58、4+85、5+84;

  第②种情况:4+25、4+52、5+24。

  小结:任意两根小棒长度的和一定大于第三根小棒。

  4.验证规律。

  提问:三角形任意两边长度的和一定大于第三边吗?

  (1)画一画:用三角尺画一个三角形。

  (2)量一量:量出三角形的各边长度。(单位:毫米)

  (3)算一算:算出任意两边之和与第三边长度的关系。

  (4)总结规律。

  提问:通过验证,你发现三角形三边的长度有哪些关系?

  师生共同总结得出:三角形任意两边长度的和大于第三边。

  追问:对于“任意两边”这四个字,你是怎么理解的?

  5.议一议:如果三根小棒的长度分别是8厘米、5厘米和3厘米,能围成三角形吗?为什么?

  引导学生得出:5厘米长的小棒和3厘米长的小棒长度相加等于8厘米,并没有大于8厘米,所以这三根小棒不能围成三角形。

  三、反馈完善

  1.完成教材第78页“练一练”第1题。

  先让学生独立进行判断,再组织交流汇报。交流时让学生说说判断的依据,教师可以介绍用两短边的和与第三边比较。

  2.完成教材第78页“练一练”第2题。

  这道题是已知三角形的两条边的长度,求第三条边的长度范围。题目提供了四个答案让学生进行选择,降低了思维难度,学生在练习时可以进行尝试。在学生完成后,教师也可以引导学生探究三角形的第三条边的长度范围,即“两边之差第三边两边之和”。

  四、反思总结

  通过本课的学习,你有什么收获? 还有哪些疑问?

三角形三边长度关系教案设计第 3 篇

  教学内容:四年级下册第62面

  教学目标:1、学生能够理解两点之间线段最短及两点间距离的含义,并在操作、观察、归纳等活动中发现、理解三角形中任意两边之和大于第三边的特性。

  2、培养学生动手实践和观察、归纳的能力。

  3、能够运用知识解决实际问题。

  教学过程:

  一、创设情境,理解两点间的距离。

  1、出示三角形ABC:从上一节课的学习中我们知道三角形有哪些特性?

  2、三角形里藏着的知识还多着呢,今天这节课我们继续研究三角形。

  3、从A点到C点,可以怎么走?相同速度时走哪条路更快到达C点?

  4、如果增加一条从A点到C点的线,还是AC最短吗?

  5、你怎么证明?(可以测量)

  6、从比较中你能得出什么结论?(即两点间线段的长度最短,线段的长度就是两点间的距离。)

  7、再来观察三角形ABC:能用算式表示AC短于另一条路吗?(AB+BC﹥AC)如果要从B到C呢?AB+AC﹥BC吗? AC+BC﹥AB吗?是不是三角形中两条边相加都会大于另一条边呢?下面我们重点来研究这个问题。

  二、探究新知

  1、学生拿出准备好的纸条,从中选择三根纸条,拼拼看。

  ⑴证明要用数据说话,你打算怎样做?

  ⑵拿出纸条后在自由本上记录三根纸条的长度,然后拼拼看,能拼成就在刚才记录的旁边打上对钩。

  ⑶学生开始拼

  ⑷学生汇报,并板演拼的过程。

  ⑸师记录(可以拼成的有:①15厘米、15厘米、15厘米,②15厘米、11厘米、11厘米,③15厘米,11厘米,8厘米,④8厘米、7厘米、5厘米。不能拼成的有:①15厘米、8厘米、7厘米,②15厘米、7厘米、5厘米。)

  2、观察:能拼成三角形的三根纸条是否符合我们刚才的猜想?

  ⑴学生观察并计算

  ⑵全班汇报交流

  ⑶从刚才的交流中我们可以得出什么结论?即:三角形里任意两边之和大于第三边。

  ⑷再来观察另外两组数据,为什么不能拼成三角形?学生观察思考。

  ⑸同桌交流。

  ⑹全班交流。即:三条边中若有两条边的和小于或等于第三边,就围不成三角形。所以从另外一个角度证明了三角形的三边关系,就是三角形的任意两边之和大于第三边。

  3、判断下面各组中三条边能否围成三角形教案。单位:厘米

  ⑴9、7、6 ⑵8、5、3 ⑶20、15、7 ⑷17、8、8

  ①学生判断 ②交流判断的结果及判断的方法 ③从刚才的交流中同学们发现,要判断三条边能否围成三角形,其实只需要判断什么就可以了?

  4、小结:同学们通过提出猜想,操作验证并归纳,我们发现了三角形的另一个特性,就是三角形的任意两边之和大于第三边。而猜想、操作、验证、归纳能都是学生数学的重要方法。

  三、练习

  1、在能围成三角形的各组小棒下面画对钩。单位:厘米

  ⑴3、4、5 ⑵3、3、3 ⑶2、2、6 ⑷3、3、5

  学生判断后全班交流。

  2、用下面的6根小棒,你能摆出几种三角形(单位:厘米)

  2、2、5、6、6、6

  ⑴学生独立思,并记录

  ⑵全班交流。(①6、6、6 ②6、6、5 ③6、6、2 ④6、2、5)

  3、现在有两根小棒的长度分别是8厘米和10厘米,请问另外一根小棒的长度可以是多少厘米?最大呢?最小呢?你是怎么想的?

  ⑴学生思考 ⑵全班交流 ⑶讨论方法

  四、评价反思

  1、今天我们研究了什么问题?

  2、我们是怎样研究这个问题的?

  五、作业

三角形三边长度关系教案设计第 4 篇

  教学理念:

  1、尊重学生的认知规律

  三角形“任意两边的和大于第三边”之内容是人教版新课标实验教材四年级下册的一个内容,它是在熟悉了什么是三角形的基础上进行教学的。我力求从实验入手,让学生通过摆小棒,判定如何才能搭成三角形,引导学生经历“发现问题、大胆猜测、操作验证、修改完善、得出结论”的探究过程,最终发现三角形中三边之间的这一特殊关系。这样的设计符合学生的认知规律,既增加学生的学习兴趣,又使学生积累了大量的操作经验和研究经验。

  2、以活动为基础,在活动中探究新知

  “自主探究、合作交流、亲身实践”是学习数学的一种重要的方式,本节课的设计我改变了“教师重讲知识、学生轻听知识”的模式,而是改为教师指导学生动手操作,自主探索,发现三角形任意两边的和大于第三边作为目的,使学生的主题地位得到了落实,学生真正地成了学习的主人。

  教学目标:

  1、使学生知道三角形任意两边之和大于第三边。

  2、让学生经历探究数学的过程:猜测----实验----结论,感受数学思想在生活、学习中的应用。

  3、通过学生动手操作、想象猜测,近一步深化空间概念,提高观察能力和动手操作能力。

  教学重、难点:

  引导学生想象、猜测、实验,研究什么样的三条线段能围成三角形,发现三角形三条边的关系。

  教法方法:

  采用问题性教学模式.“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标”。并结合先进手段实施教学,突出重点,突破难点。

  学法指导:

  通过学生动手、动口、动脑等活动,达到主动探索,发现问题的目的;引导学生分析、讨论,得出解决问题的方法,使他们的思维得到了锻炼;增强数学应用意识,合作意识,养成及时回纳总结的良好学习习惯。

  教学准备:

  课件、小棒若干

  教学过程:

  一、创设情景,引渗透新课

  师:今天我们打开课本的`82页来认识一位小朋友——小明,你们看,他在干什么?

  生:他去上学。

  师:小明从家到学校有几条路线?(观察后指名说)

  生:3条。

  师:现在小明遇到麻烦了,我们帮帮他的忙好吗?

  生:好。

  师:小明今天想快一点去学校走哪一条路最近?(把你的想法和小组内的同学说一说,然后指名说)

  生:走中间哪一条路最近。

  师:同意吗?

  生:同意。

  师:为什么呢?谁来说一下自己的理由?

  生:我量出来的。

  师:谁还有别的方法吗?

  生:直走进,拐弯走远。

  生:我们以前学过了,两点之间线段最短。

  师:同学们都有自己的想法,有的是用测量的方法知道的,有的是结合自己的生活经验,有的是用以前学过的知识。但是生活中的这些路线我们是不可能用尺子去量出他的长度的,这个时候我们该怎么办?

  师:下面我们就用数学的眼光、数学知识看看能不能解决这个问题?请同学们仔细观从小明到邮局再到学校近似于一个什么图形呢?

  生:三角形。

  师 :那中间这条路线是三角形的一条边,走旁边的路线实际是三角形的什么呢?孩子们仔细看一下?

  生:另外两条边的和。

  师:根据大家的判断,走过的三角形两条边的和要比第三条边长。那么是不是所有的三角形的三条边都有这样的关系呢?下面我们来做个实验。

  【设计说明:从学生已有的生活经验出发,给学生创设出认识的生活情景,很自然的引入课题,容易产生亲近感。但后来的知识障碍让学生感到用以前的知识解决不了这个问题,必须用一种新的知识来解决,从而激发求知欲望,为下一步的探索新知做好铺垫。】

  二、小组合作,探究新知

  1、实验一:从准备好的小棒中任意取出三根摆一个三角形,观观你能发现什么?

  学生动手操作。 交流结果。

  生:能。

  生:不能。

  师:有的同学用三根小棒摆成了一个三角形,而有的同学没有,这到底是什么原因呢?下面我们就对这两种情况做一个深入的研究。

  【设计说明:学生自然已经知道什么样的图形是三角形,但对于什么样的三根小棒能摆成一个三角形还处于模糊状态。此时的两种结果正可以激发学生的探究热情。】

  2、实验二:进一步研究在什么情况下能组成三角形?

  (1)从小棒中任意拿出三根,看观能不能摆成一个三角形?把能摆成三角形和不能摆成三角形的情况分别填写在表格实验内。

  小棒的长度(厘米)

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号