当前位置:首页 > 教案教学设计 > 数学教案

函数中心对称

日期:2021-12-23

这是函数中心对称,是优秀的数学教案文章,供老师家长们参考学习。

函数中心对称

函数中心对称第 1 篇

  (一)教学内容分析

  1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

  2.本课教学内容的地位、作用,知识的前后联系

  《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

  3.本课教学内容的特点,重点分析体现新课程理念的特点

  本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

  (二)教学对象分析

  1.学生所在地区、学校及班级的特色

  我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

  2.学生的年龄特点和认知特点

  班级学生的`年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

函数中心对称第 2 篇

初中数学课的教学应结合具体的数学内容采用“问题情境——建立模型——解释、应用与拓展”的模式展开,让学生经历了知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,增强学好数学的愿望和信心。

教学目标:

(1)在丰富的现实生活中,观察生活中的中心对称现象和图形,建立中心对称的概念。

(2)了解中心对称和中心对称图形的概念,知道它们之间的区别和联系。

(3)了解成中心对称的两个图形的性质,能画出与已知图形成中心对称的图形。

(4)能找出线段、平行四边形的对称中心,能判断某一个图形是否是中心对称图形。

(5)让学生初步了解旋转变换的数学思想方法,培养学生的想象能力和探索精神。能设计简单的对称图形,培养学生的创新能力,体验中心对称图形的美感。

二、教学重点和教学难点:

(1)教学重点:中心对称和中心对称图形的概念和性质。

(2)教学难点:中心对称和中心对称图形两个概念的区别,正确识别一个图形是否是中心对称图形,以及这些内容所渗透的变换思想。

(3)中心对称与中心对称图形的概念、性质的理解,以及它们的具体运用。在教学过程中,学生往往对概念不做深刻的理解,头脑中有一点印象就认为自己学会了,而实际应用起来就会发现有许多不明白的地方,其根源就在于对其概念与性质的真正理解上。在授课时一定要加强概念的理解和比较,让学生观察并自主画出中心对称图形就是为了让学生在不知不觉中突破难点。

三、教学方法:

本节的教学方法主要有:演示法、对比法、观察法、讲练结合法。

(1)运用多媒体把一些中心对称图形制作成可以旋转180度的动态演示。通过这些演示,加深了学生对概念的理解,逐步学会用运动的观点观察事物。

(2)对比法的使用是为了把轴对称和中心对称、中心对称和中心对称图形等概念区分开来。把两个概念的不同点一一对比,既可对旧知识进行复习,又加强了对新知识的理解,更对“对称”这一概念有了全面、完整的认识。

(3)观察法始终贯穿整堂课,演示需要学生细心的观察,同时理解概念后要学会应用和练习,这两种方法是学好知识的必备,要有意识的使学生养成善于观察的习惯,培养学生观察和分析的能力。

四、教学过程:

(一)创设问题情境引导思考:

1.以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。学生通过观察、动手分析扑克牌牌面、独立思考、探究、合作交流等活动,得到答案:只有一张扑克牌图案颠倒后和原来牌面一样,其余扑克牌颠倒后和原来牌面不一样。本环节是在扑克魔术揭密问题的具体背景下,通过学生自己的观察、发现、总结、归纳,进一步理解中心对称图形及其特点,发展空间观念,突出了数学课堂教学中的探索性。从而培养了学生观察、概括能力,让学生尝到了成功的喜悦,激发了学生的发现思维的火花。

2.用课件展示几组中心对称的图形,引导学生观察图形,既复习了旧知识同时发现了有几组图片也是对称图片(成中心对称的图形)。引导学生思考这些图形怎样才能重合?最后利用投影演示每组图形中的一个可绕某一点旋转180o后能与另一个重合(用动画的形式,从视觉上刺激学生对事物的接受),引出课题。

(二).知识讲解,及时比较:

1.通过观察让学生总结得出中心对称的定义

2.学习中心对称的性质:再次观察成中心对称的两个图形的旋转演示。教师提示学生观察这两个图形的大小关系和各个对称点之间的关系,总结得出性质。

函数中心对称第 3 篇

新课教学目标 1.知识与技能:了解中心对称及其基本性质2.过程与方法:经历观察、操作、分析等数学活动过程,通过具体实例认识中心对称,知道中心对称的性质,比照轴对称与轴对称图形的关系,认识中心对称图形,知道中心对称图形的性质3.情感态度与价值观:经历对生活中旋转现象观察、分析过程,引导学生用数学的眼光看待生活中的有关问题重点难点 1、重点:旋转图形的性质。2、难点:旋转图形的画法教学策略 观察、分析、归纳教学活动 课前、课中反思1.情境创设(1)利用课本提供的2幅实物图,引导学生观察、探索:它们的形状、大小是否相同?如果将其中的一个图形绕着某一点旋转180°,能与另一个图形重合吗?(2)引导学生用一张透明纸覆盖在图3-5上,描出四边形ABCD,用大头针钉在点O处,将四边形ABCD绕点O旋转180°,观察四边形ABCD能否与四边形A'B'C'D'重合。[来源:学§科§网]通过创设现实情境和实际操作活动,激发学生好奇心和主动学习的欲望.2.探索活动[来源:Z+xx+k.Com]活动一通过操作活动,理解中心对称的基本概念.教学中,要引导学生通过亲身实践、探索、交流、感悟,理解中心对称的基本涵义.对中心对称概念的教学,要帮助学生理解如下几点:(1)中心对称是对两个图形来说的,它表示两个图形之间的对称关系;(2)中心对称有一个对称中心,将一个图形绕对称中心旋转180°(特殊的旋转)后与另一个图形重合.活动二探索中心对称的基本性质。在探索中心对称基本性质的过程中,要将"发现"的主动权交给学生.教学中应在学生操作、观察的基础上,从这种"特殊性"人手去发现:中心对称的两个图形具有(一般地)旋转的一切性质,且具有特殊的性质--对称点连线经过对称中心,且被对称中心平分.[来源:学科网]中心对称和轴对称都是指两个图形按某种规则运动能互相重合的特殊位置关系,教学中,应注意将它们进行类比:活动三利用中心对称基本性质作图.中心对称作图,课本安排了3个操作活动.对第1个操作活动,课本给出了作图的方法、步骤,要求学生阅读、理解给出的作图语句,画出相应的图形.第2、第3个操作活动,要求学生在完成第1个操作活动的基础上,进行迁移,画出相应的图形.对第1个操作活动,课本虽给出了作图的方法与步骤,但在指导学生阅读、理解作图语句前,应引导学生对问题进行分析:假设点A的对称点为点A',则点A、点O与点A'在同一直线上,且点O为线段AA'的中点,使学生明白其中的"道理".对第2、第3个操作活动,要引导学生对问题进行分析,加深对问题的理解,但不要求学生写出分析过程.同时,在学生的作业中,只要求学生能根据要求画出图形,不要求学生写出作图的方法、步骤.3.小结(1)经历观察、操作等数学活动,通过具体实例认识中心对称,探索中心对称的性质;(2)经历利用中心对称基本性质作图的过程,掌握作图的技能. (1)经历观察、操作等数学活动,通过具体实例认识中心对称,探索中心对称的性质;(2)经历利用中心对称基本性质作图的过程,掌握作图的技能课后反思

函数中心对称第 4 篇

  在教学中以出示旋转对称图形为切入点,让学生在复习旋转对称图形的知识上导出新的知识,这样有助于学生在原有的知识体系的基础上构建新的知识体系,有助于新的概念的掌握。

  学生在初一下学期学习了轴对称的有关知识,在学习中心对称知识时一方面要用这一知识作类比,另一方面又要防止轴对称概念对中心对称概念的干扰,在教学中本课在揭示了中心对称图形的概念,加强了和轴对称图形的辨析,并在练习中掌握它们的区别,让学生在类比和辨析中更好地掌握中心对称图形这一概念。

  中心对称图形的概念是本课重点,课前我和学生一起玩魔术,准备四张扑克牌,三张不是中心对称图形的牌,一张是中心对称图形的牌,老师背过身,让学生任意转一张牌,老师都能猜出,让学生想为什么,同学们想不想学会这个本领?学习这节课的知识,你也会这个本领了。对于刚才所提出的问题学生急于知道,但仅利用现有的知识技能又无法解决,从而形成认知的冲突,这就激发了他们的求知欲,使学生在问题最集中,思维最活跃的状态下开始学习。通过一堂课的学习,在课堂结束时又回到了这个问题上,同学们明白了课前魔术表演的奥秘,也其乐融融地投入了游戏中,让他们体味到了数学的趣味和神奇。

  本课在两个图形成中心对称的特征的导出由学生自主探索而得,在演示给学生两个三角形关于点成中心对称,让学生观察图形中对应线段的位置和数量关系,对应点的连线与对称中心的关系,然后让学生自己通过连线测量发现了对应线段平行且相等,对应点的连线经过对称中心,且被对称中心平分。学生通过自主活动发现了规律,增加了他们学习数学的信心。

  我在课尾安排了让学生欣赏生活中的中心对称图形,让学生知道中心对称图形与人们生活密切相关,而且充满了对称美,也让学生知道自己也能设计这些图形,再次让学生体味数学的魅力——图形美,在课后作业中布置学生搜集生活中的中心对称图形,并设计中心对称图形,让学生将课堂中所学的知识用到生活中去。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号