当前位置:首页 > 教案教学设计 > 数学教案

中心对称图形教案湘教版

日期:2021-12-23

这是中心对称图形教案湘教版,是优秀的数学教案文章,供老师家长们参考学习。

中心对称图形教案湘教版

中心对称图形教案湘教版第 1 篇

本节内容位于北师大版八年级下第三章《图形的平移与旋转》第三节,主要是在旋转的基础上来认识中心对称及其它的性质,为下一节《简单的图案设计》打下坚实的基础,也对九年级上《特殊平行四边形》中性质和判定的学习具有指导性的作用,由此可见对初中数学图形与几何章节的学习具有基础性的作用。所以,教学的重点就是探索中心对称的性质及初步应用,让学生学会类比和迁移的数学思想。

教学目标和目标解析

一.知识与技能

(1)通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180°而成.

(2)掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形.

二.过程与方法

利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置.

三.情感、态度与价值观

经历对日常生活中与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识.

教学问题诊断分析

在第二环节小组合作讨论中心对称与中心对称图形的联系与区别时,学生很难通过图形的观察得出两者的联系与区别,原因是学生缺乏整体和部分的思想,所以教师可以先让学生讨论,当学生遇到困难时及时的引导学生从一个图形和两个图形的角度进行对比,进而得出它们的区别,然后引导学生比较概念的相同点,进而得出它们的联系。

教学支持条件分析

为了有效实现教学目标,根据问题诊断分析和学习行为分析,教师用几何画

板演示把表格中的两个图形绕某个点旋转180度,让学生认真观察图形是与自身重合还是与另一个图形重合?并在电子白板上投影各个小组讨论的结论。 教学过程设计

(一)观察探究,总结定义

导语:什么是图形的旋转?图形旋转的基本性质是什么?什么是轴对称?

设计意图:通过问题的形式引发学生回顾旧知引出新知,同时为本节的学习奠定基础。 观察发现1:

下列图形,绕中心点旋转能与自身重合吗?它们的旋转角度有什么相同点?

学生先自己观察总结图形的特征,大胆的尝试归纳数学概念,教师通过整合学生的表达,最后师生共同总结出中心对称图形的概念:把一个图形绕某个点旋转180度,如果旋转后的图形能够和原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。最后教师强调概念的要点。

设计意图:通过让学生观察生活中的大量实例,激发学生学习本节的求知欲,并基于旋转的基础上自己总结出中心对称图形的概念,培养学生观察能力和数学语言表达组织能力。

观察发现2:

师生共同总结出这些图形的特征,得出中心对称的概念:

设计意图:教师通过旋转两个图形,让学生利用总结中心对称图形概念的方式方法,类比迁移精确的总结出中心对称的概念,这个环节学生已经具备了总结概念的基础,基本上就能够描述出中心对称的概念,让学生体验获得数学概念的喜悦。

(二)师生互动,合作交流

小组讨论:1、中心对称与中心对称图形的联系与区别?

小组讨论2、轴对称图形与中心对称图形的相同点和不同点?

设计意图:让学生通过观察比较讨论得出知识点之间的联系与区别,培养学生严谨的学生思维。

3、探究合作学习:如图,旋转三角板,画关于点O对称的两个三角形;

第一步,画出△ABC;

第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A'B'C'; 第三步,移开三角板.

这样画出的△ABC与△A'B'C',关于点O对称.分别连接对应点AA'、BB'、CC'.点O在线段AA'上吗?如果在,在什么位置?△ABC与△A'B'C'有什么关系?

发现:我们可以发现:(1)点O是线段AA’的中点;(2)△ABC≌△A'B'C'.

若对称中心不在△ABC上,如下图中△ A′ B′C′与△ABC关于点O是成中心对称的,你能从图中找到哪些等量关系? (多媒体出示图形)

(1)OA=OA′、OB=OB′、 OC=OC′(2)△ABC≌△A′B′C′

总结探究结论,得出中心对称的性质:

(1)关于中心对称的两个图形中,对称点所连线段都经过对称中心,而且被对称中心所平分.

(2)关于中心对称的两个图形是全等图形.

设计意图:通过学生作图和教师多媒体展示观察出成中心对称的两个图形中所有的等量关系,建立师生互动和生生互动的数学场景,进一步将一般的等量关系上升至中心对称性质的得出。

(三)应用新知,巩固提升:

例题:画已知图形关于已知点的中心对称图形

发现:我们可以发现:(1)点O是线段AA’的中点;(2)△ABC≌△A'B'C'.

若对称中心不在△ABC上,如下图中△ A′ B′C′与△ABC关于点O是成中心对称的,你能从图中找到哪些等量关系? (多媒体出示图形)

(1)OA=OA′、OB=OB′、 OC=OC′(2)△ABC≌△A′B′C′

总结探究结论,得出中心对称的性质:

(1)关于中心对称的两个图形中,对称点所连线段都经过对称中心,而且被对称中心所平分.

(2)关于中心对称的两个图形是全等图形.

设计意图:通过学生作图和教师多媒体展示观察出成中心对称的两个图形中所有的等量关系,建立师生互动和生生互动的数学场景,进一步将一般的等量关系上升至中心对称性质的得出。

(三)应用新知,巩固提升:

例题:画已知图形关于已知点的中心对称图形

设计意图:通过例题的讲解让学生体验中心对称性质的运用,并巩固新知。

目标检测设计

1、下列图形中不是轴对称而是中心对称图形的是 ( )

A 等边三角形 B 平行四边形 C 矩形 D 菱形

设计目的:让学生巩固轴对称图形与中心对称图形的相同点和不同点。

2、下列图形中既是轴对称图形又是中心对称图形的是( )

A 等边三角形 B 等腰三角形 C 菱形 D平行四边形

设计目的:让学生在第一题的基础上将初中阶段所学的特殊图形属于哪一类图形进行归纳整理,锻炼学生的归纳能力。

3、下列图形中,既是轴对称图形又是中心对称图形的有( )

A.4个 B.3个 C.2个 D.1个

设计目的:目标检测层层递进,让学生体验总结过特殊图形之后对整合图形分类的理解和判断。

4.画一个与已知四边形ABCD中心对称图形

(1)以顶点A为对称中心;

(2)以BC边的中点O为对称中心.

B

AADD设计目的:变换不同的对称中心让学生领会利用中心对称性质作图的关键,进而检测学生

对性质的掌握程度。

5、如图所示的两个图形成中心对称,你能找到对称中心吗?

设计目的:进一步巩固中心对称的性质及其运用,检测学生灵活的运用数学知识解决数学问题的能力。 (五)总结新知,融会贯通

1

、回顾本节课的活动过程

.

观察——分析——探索——概括——应用

2

、本节课学到了哪些知识?

(1)中心对称图形与中心对称的定义

(2

)中心对称的性质

(3

)中心对称的应用

(六)布置作业,巩固新知

1.必做题:课本84页第1、2题

2.选做题:课堂内外50页 CBO C

中心对称图形教案湘教版第 2 篇

  教学建议

  知识归纳

  1.中心对称

  把一个图形绕着某一点旋转 ,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点.

  中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中心对称的两个图形,对称点的连线都过对称中心,并且被对称中心平分.

  判断两个图形成中心对称的方法是:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.

  2.中心对称图形

  把一个图形绕某一点旋转 ,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

  矩形、菱形、正方形、平行四边形都是中心对称图形,对角钱的交点就是它们的对称中心;圆是中心对称图形,圆心是对称中心;线段也是中心对称图形,线段中点就是它的对称中心.

  知识结构

  重点、难点分析:

  本节课的重点是中心对称的概念、性质和作已知点关于某点的对称点。因为概念是推导三个性质的主要依据、性质是今后解决有关问题的理论依据;而作已知点关于某个点的对称点又是作中心对称图形的关键。

  本节课的难点是中心对称与中心对称图形之间的联系和区别。从概念角度来说,中心对称图形和中心对称是两个不同而又紧密相联的概念。从学生角度来讲,在学习轴对称时,有相当一部分学生对轴对称和轴对称图形的概念理解上出现误点。因此本节课的难点是中心对称与中心对称图形之间的联系和区别。

  教法建议

  本节内容和生活结合较多,新课导入可考虑以下方法:

  (1)从相似概念引入:中心对称概念与轴对称概念比较相似,中心对称图形与轴对称图形比较相似,可从轴对称类比引入,

  (2)从汉字引入:有许多汉字都是中心对称图形,如“田”、“日”、“曰”、“中”、“申”、“王”,等等,可从汉字引入,

  (3)从生活实例引入:生活中有许多中心对称实例和中心对称图形,如飞机的螺旋桨,风车的风轮,纽结,雪花,等等,可从生活实例引入,

  (4)从商标引入:各公司、企业的商标中有许多中心对称实例和中心对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行,等等,可从这些商标引入,

  (5)从车标引入:各品牌汽车的车标中有许多都是中心对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马,等等,可从车标引入,

  (6)从几何图形引入:学习过的许多图形都是中心对称图形,如圆,平行四边形,矩形,菱形,正方形,等等,可从几何图形引入,

  (7)从艺术品引入:艺术品中有许多都是呈中心对称或是中心对称图形,如下图,可从艺术品引入。

  教学设计示例

  教学目标

  1.知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。

  2.会根据关于中心对称图形的性质定理2的逆定理来判定两个图形关于一点对称;会画与已知图形关于一点成中心对称的图形。

  此外,通过复习图形轴对称,并与中心对称比较,渗透类比的思想方法;用运动的.观点观察和认识图形,渗透旋转变换的思想。

  引导性材料

  想一想:怎样的两个图形叫做关于某直线成轴对称?成轴对称的两个图形有什么性质?

  (帮助学生复习轴对称的有关知识,为中心对称教学作准备)

  画一画:如图4。7-1(1),已知点P和直线L,画出点P关于直线L的对称点P′;如图4。7-1(2),已知线段MN和直线a,画出线段MN关于直线a的对称线段M′N′。

  (通过画图形进一步巩固和加深对轴对称的认识)

  上述问题由学生回答,教师作必要的提示,并归纳总结成下表:

  观察与思考:图4。7-2所示的图形关于某条直线成轴对称吗?如果是,画出对称轴,如果不是,说明理由。

  (教师把图4。7-2的两个图形制成投影片或教具,学生仔细观察后,能发现这两个图形都不是轴对称。然后,教师适时提出问题:这两个图形能不能重合?怎样才能使这两个图形重合呢?让学生观察、探究、讨论,教师可以直观地演示中心对称变换的过程,让学生发现:把其中一个图形统一特殊点旋转180度后能与另一个图形重合。)

  教学设计

  问题1:你能举出1~2个实例或实物,说明它们也具有上面所说的特性吗?

  说明:学生自己举例有助于他们感性地认识中心对称的意义。然后,教师指出:具有这种特性的图形叫做中心对称图形,并介绍对称中心,对称点等概念。

  问题2:你能给“中心对称”下一个定义吗?

  说明与建议:学生下定义会有困难,教师应及时修正,并给出明确的定义,然后指出定义中的三个要点:(l)有一个对称中心――点;(2)图形绕中心旋转180度;(3)旋转后与另一图形重合。把这三要点填入引导性材料中的空表内,在顶空格内写上“中心对称”字样,以利于写“轴对称”进行比较。

  练一练:在图4。7-3中,已知△ABC和△EFG关于点O成中心对称,分别找出图中的对称点和对称线段。

  说明与建议:教师可演示△ABC绕点O旋转180度后与△EFG重合的过程,让学生说出点E和点A,点B和点F,点C和点G是对称点;线段AB和EF、线段AC和EG,线段BC和FG都是对称线段。教师还可向学生指出,图4。7-3中,点A、O、E在一条直线上,点C、O、G在一条直线上,点B、O、F在一条直线上,且AO=EO,BO=FO,CO=GO。

  问题3:从上面的练习及分析中,可以看出关于中心对称的两个图形具有哪些性质?

  说明与建议:引导学生总结出关于中心对称的两个图形的性质:定理l---关于中心对称的两个图形是全等形;定理2――关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

  问题4:定理2的题设和结论各是什么?试说出它的逆命题。

  说明与建议:学生解答此题有困难,教师要及时引导。特别是叙述命题时,学生常常照搬“对称点”、“对称中心”这些词语,教师应指出:由于没有“两个图形关于中心对称”的前提,所以不能使用“对称点”、“对称中心”这样的词语,而要改为“对应如”、“某一点”。最后,教师应完整地叙述这个逆命题---如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于点对称。

  问题5:怎样证明这个逆命题是正确的?

  说明与建议:证明过程应在教师的引导下,师生共同完成。由已知条件――对应点的连线都经过某一点,并且被这一点平分,可以知道:若把其中一个图形绕着这点旋转180度,它必定于另一个图形重合,因此,根据定义可以判定这两个图形关于这一点对称。这个逆命题即为逆定理。根据这个逆定理,可以判定两个图形关于一点对称,也可以画出已知图形关于一点的对称图形。

  练一练:访画出图4.7-4中,线段PQ关于点O的对称线段P′Q′。

  (画法如下:(1)连结PO,延长PO到P′,使OP′=OP,点P′就是点P关于点O的对称点,(2)连结QO,延长QO到Q′,使Q′Q=OQ,点Q′就是点Q的对称点,则PQ′就是线段PQ关于O点的对称线段。教师应指出:画一个图形关于某点的中心对称图形,关键是画“对称点”。比如,画一个三角形关于某点的中心对称三角形,只要画出三角形三个顶点的对称点,就可以画出所要求的三角形。)

  例题解析

  课本例题

  说明:(l)教师应让学生读题分析,给每个学生印发一张印有图4。7-5的纸,让学生动手画图。(2)画好图后让学生总结:画多边形的中心对称图形只要画出多边形各顶点的对称点,即能画出所求的对称图形。

  课堂练习

  课本例后练习第1、2题。

  (对第2题,应先画出图形,然后按照中心对称的定义或逆定理来说明理由。第2题的第(1)小题可用定义说明,第2题的第(2)小题可根据逆定理来说明。这里把平行四边形的对角顶点和平行四边形的对边分别看成两个图形:分别是两个点和两条线段。)

  1。

  2.中心对称与轴对称有什么不同?

  中心对称――图形绕点旋转180度。

  轴对称――图形沿轴翻折180度。

  作业

  1。课本习题4。4A组第1题(1)。

  2。课本习题4。4A组第3、4题。

中心对称图形教案湘教版第 3 篇

 一、教材分析

  (一)、地位与作用

  本节课主要学习中心对称的概念和性质。中心对称是旋转变换的特殊形式,所以已经学过的轴对称变换和旋转的概念及性质,为本节课的学习起了铺垫作用,扫清了学习障碍,本节课的知识也为即将研究的中心对称图形、关于原点对称的点的坐标以及利用平移、轴对称、旋转的组合进行图案设计奠定了坚实的基础。

  (二)、教学目标分析

  知识与技能:理解中心对称,对称中心,对称点等概念;掌握中心对称的性质;应用中心对称的概念及性质,解决实际问题。

  过程与方法::经历探究发现中心对称性质的过程,提高观察、分析、抽象、概括等能力;体验猜想、类比等数学思想。感悟数学来源于生活,又服务于生活的真谛。

  情感态度与价值观:欣赏数学的美学价值,树立学好数学的信心

  (三)教学重、难点分析

  重点:掌握中心对称的概念及性质

  难点:准确理解概念及性质,利用其解决实际问题。

  二、教法与学法分析:

  (一)、学情分析:本节课是在学生学习了旋转的基础上,从旋转变换引入中心对称的,学生在学习旋转的过程中,已经充分体验了观察、测量、旋转画图等活动,经历了在操作活动中探索性质的过程,获得了初步的数学活动经验和体验,具备了一定的.主动参与、合作交流的意识和初步的观察、分析、抽象概括能力。

  (二)、教学方法:结合本节课的教学内容,以及学生的心理特点和认知水平,主要采用启发探究和直观演示的教学方法,创设情境启导学生观察、探索、抽象、分析中心对称的概念,揭示刻画中心对称的性质。

  (三)学习方法:新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用动手实践、自主探索,合作交流的学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

  (四)辅助手段:

  利用多媒体教学平台来配合教学,就可以把抽象的内容变得更具体,为学生提供丰富的感知材料,培养学生数学直觉能力。

  三、教学过程

  (一)探究问题,形成概念

  第一步:为了使学生关注到概念的实际背景,首先利用多媒体演示2组图片的运动过程,并提出如下问题,力图在课一开始就紧紧抓住学生。

  问题1:观察下面的2组图形,看一看各组中2个图形的形状、大小是否相同?怎样将一个图形旋转得到另一个图形?

  很自然的从旋转变换的角度引入本节课题:中心对称。让学生体会到知识间的内在联系,中心对称实际上是旋转变换的一种特殊形式,渗透了从一般到特殊的数学思想方法。

  第二步:教师再次展示一组图片,演示旋转的过程,进一步提出问题,给学生一定的思考和讨论的空间。接下来从具体图案中抽象出两个三角形,提问:

  问题2: (1)把其中一个图案绕点O旋转180°,你有什么发现?

  (2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD绕点O旋转180°,你有什么发现?

  引导学生分析问题,从而把以下三点逐一击破:1、两个图形;2、(选定)一个点;3、两个图形,一个图形绕着某个点旋转180°后能与另一个图形重合。

  (二)探索研究,归纳性质

  第一步:为了让学生在理解概念的同时,探索发现中心对称的性质。教师引导学生动手操作,完成63页探究:旋转三角板,画关于点O对称的两个三角形。然后利用画好的学具,分别连接对应点AA’、BB’、CC’。提问:

  (1)点O在线段AA’上吗?如果在,在什么位置?

  (2)△ABC与△A’B’C’有什么关系?

  (3)你能从中得到什么结论?

  第二步:为了更好的深化学生对知识的理解,接下来让学生对比中心对称与轴对称的联系与区别,提出问题:中心对称与轴对称有什么区别?又有什么联系?

  问题提出后,让学生小组内进行充分的讨论交流,共同完成事先准备好的图表。老师利用投影仪进行展示,并让小组选代表进行说明。对于没有归纳完整的,其他组的同学进行补充,对于完成较好的小组,应给予及时的表扬和鼓励。

  (三)问题探索,解释应用

  为加深学生对概念和性质的理解,设计了如下例题:求作已知点A关于点O的对称点A′。学生大都能作出点A关于点O的对称点A′,然后请一名学生在黑板上完成线段的中心对称线段的作图,并写出作法。教师利用多媒体进行演示,规范作图步骤。待学生完成作图后,进一步提问:

  1、一个点绕对称中心旋转180o,得到的是一个平角,这表示什么?

  2、你是如何理解“对称点所连线段都经过对称中心,而且被对称中心所平分”的?

  3、怎样作出△ABC关于点O对称的△A′B′C′呢?

  问题提出后,适当等待,学生纷纷发表自己的见解,畅谈如何作△ABC关于点O对称的△A′B′C′。

  这道题是利用中心对称的性质进行作图,使学生能熟练画出两个关于某点成中心对称的图形,巩固学生的作图能力,向学生渗透应用数学的观念。

中心对称图形教案湘教版第 4 篇

  (一)教学内容分析

  1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

  2.本课教学内容的地位、作用,知识的前后联系

  《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

  3.本课教学内容的特点,重点分析体现新课程理念的特点

  本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

  (二)教学对象分析

  1.学生所在地区、学校及班级的特色

  我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

  2.学生的年龄特点和认知特点

  班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号