当前位置:首页 > 教案教学设计 > 数学教案

从分数到分式教案反思

日期:2021-12-26

这是从分数到分式教案反思,是优秀的数学教案文章,供老师家长们参考学习。

从分数到分式教案反思

从分数到分式教案反思第 1 篇

一、授课内容的数学本质和教学目标定位

【授课内容的数学本质】

分数与分式联系紧密,二者是具体与抽象、特殊与一般的关系.分数的有关结论与分式的相关结论具有一致性,即数式通性.可以通过类比分数的概念、性质和运算法则,得出分式的概念、性质和运算法则.由分数引入分式,既体现了数学学科内在的逻辑关系,也是对类比这一数学思想方法和科学研究方法的渗透.

从整数到分数是数的扩充,从整式到分式是式的扩充.数学知识源于生活、用于生活.分式与整式都是描述数量关系的代数式,研究分式有助于进一步培养数学建模的意识和数学应用的能力.

分式概念是形式定义,分式的分母不能为0(即分式有意义的条件)是对分式概念的深入理解.此外,考察使分式值为0(或为正数、为负数)的条件,本质上是解一类特殊的分式方程(或不等式).明确分式的分母不能为0有助于理解解分式方程可能产生增根的道理.

【教学目标定位和教学重、难点】

教学目标:

1. 了解分式的概念,能确定分式有意义的条件,能确定使分式的值为0的条件.

2. 通过解决实际问题,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式.

3. 体会类比等数学思想或方法,获得代数学习的成功经验.

本节课的重点为分式概念、分式有意义的条件;难点是分式有意义及分式的值为0的条件.

从分数有意义到分式有意义,从判断分母是否为0到求解分母何时值为0,并将此规律应用于求解最简单的分式方程(分式值为0),既是知识的同化迁移,也包括了调整和重组的因素.这部分内容是本课的教学难点.

二、教材的地位和作用

本节课是分式单元起始课,主要内容是分式的概念、分式有意义的条件和用分式表示数量关系.分数和整式的知识是学习本节课的基础,本节课内容也是进一步学习分式性质、运算、解分式方程以及后续学习反比例函数的基础.

新教材体系下,学生已经历了从有理数到整式再到一次函数的思维提升;从本节课开始,学生的思维还要经历从分数到分式再到反比例函数的又一次螺旋式上升.

三、教学诊断分析

班级状况:授课班级41名学生多数有较好的数学素养,求知欲强,乐于面对挑战;也有少数学生学习数学的热情不高、代数运算能力较弱.

知识基础:学生对分数和整式的知识比较熟悉,也已初步掌握了列代数式、求代数式的值及解简单的一元方程或不等式的方法.本节课中,预计所有学生对由分数类比到分式的过渡不会感到困难;也能顺利发现当发现字母取某些特殊值时,分式无意义.

预计可能出现的主要问题:分析复杂分式时,容易遗漏分母不为0的条件或者将其误解为分母中的字母取值不为0.在将分子等于0的条件转化为方程、将分母不等于0的条件转化为不等式后,也可能不知从何入手求解由方程和不等式组成的条件组.这部分内容是教学重点和难点.

四、教法特点以及预期效果分析

本节课的教学设计中,我重点关注以下几个问题:(1) 学习兴趣的培养,(2) 重点难点的突破,(3) 应用意识的渗透,(4) 思维训练的层次.

为此,在引入部分,打破学科界限,用学生熟悉的诗文素材构建情境、挖掘问题,提升学生的学习兴趣,激发他们的探究热情,让学生在逐一解决问题的过程中体会成就感、并通过揭示复杂分式的实际背景的练习提升思维层次.

接下来,教师引导学生观察、归纳所列出的分式的特点,形成分式概念,突出重点.形成概念的过程中要警惕负迁移的发生.例如,在给出分式的形式表示后,可能有学生因机械记忆“B中含字母”或者“A中含字母”而导致混乱.这时需要教师及时指出,关键是理解分母含字母.又如,学生已学习了一次函数,可能会从变量和函数的角度观察分式.教师可以肯定学生的数学思维,但不必在此展开强调函数观点,紧扣住本节课类比分数认识分式的主要思路即可.

在突破难点的过程中,为达到引发类比、化旧知为新知的教学目的,设计了填写表格这个探究环节.通过填表,学生产生认知冲突、然后自己发现问题、分析问题和解决问题的过程,正是体现学生主体性的学习过程.这个设计也能渗透给学生一种认识新事物、学习新知识的方法——

(1) 从具体入手:当分式中字母取定具体的数值时,分式即表示具体的数.

(2) 发现问题:当字母取某些特殊值时,有可能出现分母等于0的情况.

(3) 分析、解决问题:类比分数有意义的条件可知,分式要有意义,分母不能为0.

虽然上述过程对相当一部分学生而言确实简单了些,但其中隐含的“从具体入手”、“正向思维”等研究方法并不平凡.华罗庚先生所讲的“巧从拙中来”,庶几近之.另外,这张表也为学生后续学习反比例函数做了初步铺垫.

两道例题的分析讲解需要体现教师的主导性.先帮助学生总结出分式有意义和值为0分别需要满足的条件,再通过板书教给学生严谨有序的思维模式,使学生体会到方程和不等式联立的方法有助于理清思路,同时分散了解题难点(列条件、解条件组分为两个步骤).这是帮助学生从感性思维上升到理性思维的重要一步.另一方面,学生领会和掌握这种解题方法需要一个过程.通过多种变式练习,教师引导学生多实践、多谈思路,做到师生互动、生生互动,发现问题后互相提醒、纠正,达到落实双基的效果.

三个拓广探究问题力求让不同层次的学生都能有发挥的空间.

练习1引导学生灵活处理方程和不等式组成的条件组:先解方程,再将方程的解逐一代入不等式检验.

练习2引导学生将视野由等量关系拓展至不等关系,类比分数的值为负数的条件得到这个分式的值为负数的条件.

练习3是学生熟悉的追及问题情境,他们可以很快地给出正确代数式,但一般不会首先考虑取值范围.教师可以从肯定学生的生活经验出发,先让学生列式,体会成就感,再从分式要有意义的角度提醒学生关注字母的取值范围,最后引导提升到字母取值应使实际问题有意义的认识高度,潜移默化中渗透数学建模的意识.

游戏环节再次提升学生的兴趣.教师鼓励学生开阔思路、大胆发言、不断出新,师生共同分享“突发奇想”、掌握知识的喜悦.这个设计旨在培养学生的发散思维和创造力,也符合新课标中鼓励学生在自主探索和合作交流中掌握数学知识的理念.

本节课的分层作业中,必做题目涵盖了本课的重、难点内容;选作题目是开放式的,鼓励学生在探究中创新求变、总结规律,提高分类的意识和穷举的能力.

总之,本节课的教法特点是:通过不断提出和解决问题,激发学生的求知欲,使学生在老师的引导下,通过观察、归纳、总结、应用甚至游戏掌握新知.从实际教学效果看,学生思考积极、发言踊跃,始终保持了一种积极的课堂状态.

本节课我对基础薄弱的学生能否顺利形成概念给与了特别的关注,保证绝大多数学生能跟上最低限度的教学要求.在思维拓展的环节中,学生也不乏精彩的发言和创见,应该说实现了课前设计的三维教学目标.

从分数到分式教案反思第 2 篇

教材分析

本节“从分数到分式”,是分式这一章的起始课,主要内容是分式的概念、分式有意义的条件和分式值为0的条件. 分数和整式的知识是学习本节课的基础, 本节课内容也是进一步学习分式性质﹑运算﹑解分式方程以及后续学习反比例函数的基础. 从本节课开始, 学生的思维要经历从分数到分式再到反比例函数的一次螺旋式上升。

教学目标

1.分式的概念, 分式有意义的条件, 分式为0的条件。

2. 经理观察、想象、类比的过程, 积累数学活动经验, 感受从具体到抽象, 从特殊到一般的认识过程。

3. 通过研究解决问题的过程, 培养学生合作交流的意识与探究精神。

教学重点:分式的概念, 分式有意义的条件。

教学难点:分式有意义的条件, 分式的值为0的条件。

教学过程

一﹑揭示课题﹑初探定义

1. 直接导入,快速进入学习情境

教师板书题目分数,让学生举出分数的例子,并进一步提问,这个分数表示什么意义?除此之外,我们还学了分数的那些知识?

类比与归纳是探索新概念的重要方法,既然是“从分数到分式”,那么我们本节课研究——分式。

(设计意图:从“从分数到分式”本身就是一种导入,这样开门见山的展示课题、分析课题能够让学生直接、快速进入学习情境。)

2. 实例入手,初探定义

数学来源于生活,又服务于生活,请同学们看学案,完成填一填,比比谁做的又快又对!

(1)长方形面积为10cm 2,长为7cm ,宽应为______ cm;长方形的面积为S ,长为a ,宽应为______。

(2)把体积为200 cm3,的水倒入底面积为33cm 2的圆柱形容器中, 水面高度为______cm;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为______。

(3)某村有n 个人,耕地40公顷,人均面积为 公顷。 教师出示相关图片的题目,集体订正答案。出示得出的代数式10, s , 200, v , 40。 7a 33s n

要求同学们观察这些代数式,给这些式子分类,他们的区别在哪里?根据学生的回答,教师板

书:

分数 整数

分式 整式

要求学生尝试总结分式的定义,根据学生的回答,多媒体显示分式的定义。

一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A/B叫做分式。其中A 叫做分式的分子,B 叫做分式的分母。

(设计意图:本节课从课题开始直到定义的得出,处处充满“数学味”。一方面,教师直接告诉学生“类比和归纳是探索新概念的重要方法”,另一方面,本节课在处理分数与分式的不同时,教师板书到黑板上,引导学生再次发现“类比”这一思想方法的的实用性,并通过寻找、表述共同点,进一步总结出“分式的意义”。这样的设计技能培养学生的发散思维,也能训练学生的语言表达能力,更重要的是,学生从中掌握了对比总结定义的方法。)

练习1:下列各式中哪些是分式?哪些是整式?它们的区别是什么?

①1x 142a -5x m -n , ②, ③, ④, ⑤,⑥, ⑦ , 222x 3π3b +53x -y m +n

x 2+2x +1c 4a 2

⑧2,⑨ , ⑩ 。 x -2x +13(a -b ) a

分式有: ;整式有: 。两类式子的区别是:

在学整式时,给出其中字母一个确定值,能够求出整式的值,类比整式,给出其中字母一个确定值,我们也能够求出分式的值,咱们以1为例,请自选一个你喜欢得数,代入分式中x -1

求值。

由于我们选的数不同,代入到同一个分式中,得到的答案不同,看来分式比分数更具有一般性。是不是所有的数都能带到分式中来?为什么?

接下来咱们再次类比分数有意义的条件再探究分式有意义的条件。

(设计意图:教师在“分式的定义”与“分式有意义的条件”两个环节的过度上非常自然,在“分式比分数更具有一般性”“是不是所有的数都能带到分式中来? 为什么?”问题及其学生思维的火花,让“分式有意义的条件”在无意识中总结出来,效果较好。)

二、再探分式有意义的条件,加深理解

例1 下列分式中的字母满足什么条件时分式有意义? (1)x +y x 12. ; (2); (3); (4)x -y x -15-3b 3x 学生解答后,小组展示,并总结分式有意义的条件。教师最后强调分母B 的整体性。(板书:整体性)

以上题目,如果不改变解题思路,你还可以怎么问?引出分式无意义的条件(板书:分母

=0分式无意义。)

(设计意图:此环节继续以问题作为激活学生思维的刺激因素,激发学生产生合理的认知突变,激发起他们的学习兴趣;“以上题目,如果不改变解题思路,你还可以怎么问?”用问题作为探究的前提,引导学生探究的兴趣,在探究的基础上获取知识。)

练习2:x 当取什么值时,下列分式有意义?

11x -52x -3(1) ; (2) ; (3) ; (4) 2. 3x 3-x 3x +5x -16

(设计意图:加强巩固“分式有意义的条件”的理解与应用。)

三、三探分式为0,巩固升华

分式中,对分子有要求吗?

例2 在什么条件下,下列分式的值为0?

x -15a -b (1); (2). x a +b

小组交流,并展示答案。引导学生发现分式为0的条件是分子=0且分母≠0(板书分子=0且分母≠0)强调“且”

(设计意图:该环节注重发挥学生的主体地位。采用小组交流的方式,做到了自主探究,相互讨论,逐渐发现和提出问题,有效的发挥了学生积极探究的主动性,较好的培养了学生的数学思维,在交流的过程中完成对知识的掌握。)

四、归纳小节,内化知识

通过本节课的学习,你了解了哪些知识?你体会到了什么?还存在哪些疑惑?

(设计意图:让学生畅所欲言,积极发表自己的看法与想法,最大限度的发挥学生的潜能,激发学习兴趣,从而达到学生在教师的指导下主动地,富有个性地,快乐的学习,提高合作交流能力,培养创新精神。)

五、达标测试,充实提高(每小题10分,共40分)

1. 填空:

(1)当x 时,分式5有意义; 7x

(2)当x 时,分式x +1有意义;

1(3)当b 时,分式有意义; 6-2b

(4)当x,y 满足 时,分式3-x 有意义。 2x -3y

2. 下列式子中的字母满足什么条件时分式无意义?

(1)

2m 2a +b 2 ; (2); (3)2; 3m +23a -b x -1

3. 当x 为何值时,下列分式的值为0?

(1)

4. 已知x=-4时分式x -b a +b 无意义,x=2时分式的值为零,求分式的值。 2x +a a -3b x -17x (2)2 21-3x x -x

(设计意图:达标测试题给学生限定的时间,每一道题都设置分值,目的在于反馈教学的效果。在选题上有梯度,考虑到面向全体学生。主要目的是巩固所学知识,拓展学生思维。)

设计说明:

《从分数到分式》的重点是理解并掌握分式的概念,体会其内涵,难点是分式有意义的条件, 分式的值为0的条件。本节课通过回顾交流,情境引入、创设情境,观察类比、问题牵引,发展认知、随堂练习,巩固深化、课堂总结,达标检测实现学生理解掌握从分数到分式,突出重点、突破难点,使学生爱学、善学、乐学。本节通过设疑引发学生学习数学的兴趣,变“要我学”为“我要学”。采取学生小组讨论、提问、上讲台板演、合作探究等方法,用启发引导的方式学习分式的概念,体现以学生发展为本的理念,让学生成为学习的主人。

从分数到分式教案反思第 3 篇

一、教学目标

1、以描述实际问题中的数量关系为背景抽象出分式的概念,建立数学模型,并理解分式的概念.

2、能够通过分式的定义理解和掌握分式有意义的条件.

二、教学重难点

1、教学重点

理解分式有意义的条件及分式的值为零的条件.

2、教学难点

能熟练地求出分式有意义的条件及分式的值为零的条件.

三、教学设计

(一)复习引入

1.什么是整式?什么是单项式?什么是多项式?

2.判断下列各式中,哪些是整式?哪些不是整式?

①;②1+x+y2;③;④;⑤;⑥;⑦.

(二)探究新知

1.分式的定义

(1)学生看教材的问题:一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?

分析:设江水的流速为v千米/时.

轮船顺流航行90千米所用的时间为小时,逆流航行60千米所用时间为小时,所以=.

(2)学生完成教材第127页“思考”中的题.

观察:以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?

可以发现,这些式子都像分数一样都是(即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A,B都是整式,并且B中都含有字母.

归纳:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.

巩固练习:教材第129页练习第2题.

2.自学教材第128页思考:要使分式有意义,分式中的分母应满足什么条件?

分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式才有意义.

学生自学例1.

例1 下列分式中的字母满足什么条件时分式有意义?

(1);(2);(3);(4).

解:(1)要使分式有意义,则分母3x≠0,即x≠0;

(2)要使分式有意义,则分母x-1≠0,即x≠1;

(3)要使分式有意义,则分母5-3b≠0,即b≠;

(4)要使分式有意义,则分母x-y≠0,即x≠y.

思考:如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?

巩固练习:教材第129页练习第3题.

3.补充例题:当m为何值时,分式的值为0?

(1);(2);(3).

思考:当分式为0时,分式的分子、分母各满足什么条件?

分析:分式的值为0时,必须同时满足两个条件:(1)分母不能为零;(2)分子为零.

答案:(1)m=0;(2)m=2;(3)m=1.

(三)归纳总结

1.分式的概念.

2.分式的分母不为0时,分式有意义;分式的分母为0时,分式无意义.

3.分式的值为零的条件:(1)分母不能为零;(2)分子为零.

(四)布置作业

教材第133页习题15.1第2,3题.

四、教学反思

在引入分式这个概念之前先复习分数的概念,通过类比来自主探究分式的概念,分式有意义的条件,分式值为零的条件,从而更好更快地掌握这些知识点,同时也培养学生利用类比转化的数学思想方法解决问题的能力.

从分数到分式教案反思第 4 篇

  从分数到分式

  课时: 一课时

  知识与技能目标

  1.使学生了解分式的概念,明确分母不得为零是分式概念的组成部分.

  2.使学生能够求出分式有意义的条件,过程与方法目标

  能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比

  转化的`思想方法研究解决问题.

  教学重点和难点,准确理解分式的意义,明确分母不得为零既是本节的重点,又是本节的难点

  教学方法: 探究与讲授结合.

  教学过程

  活动一 情境引入:

  一般轮船在静水中的最大航速为20千米/时,它沿江

  以最大航速顺流流航行100千米所用时间,与以最大航

  速逆水航行60千米所用时间相等,江水的流速为多少?

  活动二 思考

  活动三 观察

  (1) 由学生分组讨论分式的定义,对于“两个整式相

  除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:

  (2)由学生举几个分式的例子.

  (3)学生小结分式的概念中应注意的问题.

  ①两个整式相除

  ②分母中含有字母.

  (4)整式与分数的不同.分工具有一般性.

  活动四 分式中的分母应满足什么条件?

  如同分数一样,分式的分母不能为零

  活动五 : 1、求分式的值.2、何时分式的值为零?

  例1(1)当a=1,2时,求分式 的值;

  解:(1)当a=1时,

  当a=2时

  例2当x取何值时,下列分式有意义?

  思考:若把题目要求改为:“当x取何值时下列分式无意义?”该怎样做?

  例3 当x取何值时,下列分式的值为零?

  解:由分子x+3=0得x=-3.

  而当x=-3时,分母2x-7=-6-7≠0.

  ∴当x=-3时,原分式值为零.

  例4 当x 取何值是分式 的值为零。

  解:由分子|x| - 1 =0得x = ±1

  当x = 1时 x+1≠0

  当x=-1时x+1=0,分式无意义。

  ∴当x = 1时原分式的值为零。

  小结:若使分式的值为零,需满足两个条件:

  ①分子值等于零;②分母值不等于零.

  活动六 课堂练习p课本第6页1——3

  活动七 课堂小结

  本节课你学到了哪些知识和方法?

  1.分式的定义。

  2、分式与分数的区别.

  3.分式何时有意义?

  4.分式何时值为零?

  作业

  教材p10页 第1—3题

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号