日期:2021-12-29
这是代入消元法教案(二),是优秀的数学教案文章,供老师家长们参考学习。
学习目标:会运用代入消元法解二元一次方程组.
学习重难点:1、会用代入法解二元一次方程组。
2、灵活运用代入法的技巧.
学习过程:
一、基本概念
1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。
2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。
3、代入消元法的步骤:
二、自学、合作、探究
1、将方程5x-6y=12变形:若用y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________。
2、在方程2x+6y-5=0中,当3y=-4时,2x=____________。
3、若的解,则a=______,b=_______。
4、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。
5、用代人法解方程组①②,把____代人____,可以消去未知数______。
6、已知方程组的解也是方程组的解,则a=_______,b=________,3a+2b=___________。
7、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_____,q=________。
8、当k=______时,方程组的解中x与y的值相等。
9、用代入法解下列方程组:
⑴⑵⑶
二、训练
1、方程组的解是()
a.b.c.d.
2、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_____,y=______;当x、y相等时,x=______,y=_______。
3、若2ay+5b3x与-4a2xb2-4y是同类项,则a=______,b=_______。
4、对于关于x、y的方程y=kx+b,k比b大1,且当x=时,y=,则k、b的值分别是()
a.b.2,1c.-2,1d.-1,0
5、用代入法解下列方程组
⑴⑵
6、如果(5a-7b+3)2+=0,求a与b的值。
7、已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m
8、若方程组与有公共的解,求a,b.
各位评委、老师:大家好!
我是来自丁庄镇中心初中的王红。今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册,第八章第二节《二元一次方程组的解法》第一课时代入消元法。
下面我从教材分析、教学方法、学法指导、教学过程、教学感想这五个方面汇报我对这节课的教学设想。
一、教材分析
教材的地位和作用
本节主要内容是在上一节已学习了二元一次方程(组)和二元一次方程(组)的解的概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想----“消元”。二元一次方程组的求解,用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面利用方程组来解决实际问题打下了基础。
2、教学目标
根据本课教材的特点、课程标准对本节课的教学要求、学生的身心发展的合理需要,我从三个不同的方面确立了以下教学目标:
(1) 知识技能目标:1)会用代入法解二元一次方程组
2)初步体会解二元一次方程组的基本思想----消元
(2) 能力目标:通过对方程组中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,由未知向已知的转化,培养观察能力和体会化规思想。通过用代入消元法解二元一次方程组的训练,培养运算能力。
(3) 情感目标:通过研究解决问题的方法,培养学生合作交流意识与探究精神。
3、重点、难点
根据学生的认知特点,我确立了本节课的重难点。
重点:用代入消元法解二元一次方程组
难点:探索如何用代入法将“二元”转化为“一元”的消元过程。
为了突出重点、突破难点,让学生动手操作,积极参与并主动探索解题方法,我设计并制作了多媒体课件,帮助学生理解代入消元法。
成功的教学必须选择合适的教法和学法,因此我确定如下教法和学法:
二、教学方法
我采用了探究式教学方法,设疑思考、点拨启发、小组探究、逐步深入。
三、学法指导
我采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的`主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
四、教学设计
1、根据以上分析,我设计了以下六个教学环节:
2、教学过程
下面我就每一个教学环节,具体介绍我对本节课的教学设想。
环节一:创设情境
活动一:出示引例:我校举办“奥运杯”篮球联赛,每场比赛都要分出胜负,胜1场得2分 ,负1场得1 分,我班篮球队为了取得好名次 ,想在全部22场比赛中得40分,那么我班篮球队胜负场数应分别是多少?
学生活动:列方程或方程组解决问题
教师关注:学生是否能够多角度地考虑问题.
设计意图:创设问题情景,让学生从生活中发现数学问题,激发学生的学习兴趣。
环节二、尝试发现
活动二:小组探究:能否将二元一次方程组转化为一元一次方程进而求得方程组的解呢?
学生活动:小组探究二元一次方程组的解法,初步体验解二元一次方程的步骤。
教师关注:学生思维角度是否合理,学生是否能抓住问题的核心部分。
设计意图:在学生小组讨论的过程中提供充分从事数学活动的机会,从而激发学生的学习积极性,体会在解决问题的过程中,与他人合作的重要性。
活动三:小组展示
学生活动:分小组针对老师给出的题目,展示解二元一次方程组的方法。
教师关注:关注:学生用语言表达自己的观点的准确性与全面性。
设计意图:在学生小组展示的过程中,要让学生尽情发挥,这样才能因材施教。发展学生有条理思考问题的能力和表达能力。
活动四:再看转化、把握解题技巧
学生活动:观察转化过程中的技巧,并尝试总结。
设计意图:转化是解方程组的重要环节,也是提高解题速度和正确度的关键,在这里探讨,帮助学生更好的掌握代入消元法。
环节三、 小组闯关
活动五:闯关练习一,解二元一次方程组,分小组竞争过关比例。
学生活动:做练习题
教师关注:学生解题的步骤的完整性,和解题的正确并及时的纠正错误
设计意图:掌握用代入消元法解方程组的一般过程,会解二元一次方程组并体会消元的思想。
活动六:闯关练习二,给出一个利用二元一次方程组解决的实际问题,拓展学生的思维。
学生活动:独立完成本题。
设计意图:在前面学习解二元一次方程组的基础上,提出实际问题,发展学生得多角度思维能力。
环节四、拓展升华
活动七:出示例题2.
学生活动:先独立思考,在同学之间交流一下想法,然后解决问题。
教师关注:学生是否可以找到等量关系,列出方程组,解方程组。
设计意图:通过用方程组解决实际问题,培养学生运用代入消元法解方程组的技能和分析问题,解决问题的能力。达到将所学知识进一步升华的目的。
环节五: 反思小结
活动八:我有哪些收获?
学生活动:学生归纳总结
教师关注:(1)学生是否养成归纳、整理、总结的好习惯;
(2)评价学生是否全面理解并掌握了本节课的知识。
环节六、布置作业
1、必做题:
P103 第2题 ⑵ ⑷, 第4题
2、 选做题:
设计意图:分层次,选择作业题,有利于学有余力的学生的发展。
最后我以著名数学家笛卡尔的一句话结束这节课。
五、板书设计
8.2二元一次方程组的解法
----代入消元法
1、二元一次方程组 一元一次方程
2、代入消元法的一般步骤:
3、思想方法:转化思想、消元思想、方程(组)思想.
六、教学感想
在教学过程中,我始终:
坚持一个原则——教为主导,学为主体
坚守一个理念——先学后教,以学定教
贯穿一个思想——享受数学,快乐学习
以上是我对本节课的理解,有不当之处尽请各位老师批评指正。谢谢!
我的说课到此结束,谢谢大家!
一、教学目标
【知识与技能】
在代入消元的基础上掌握加减消元法去解方程组的思想,并能正确运用加减消元法解方程组。
【过程与方法】
通过小组合作、讨论的过程,学生的交流表达能力,归纳总结能力,以自学能力可以得到提升。
【情感态度与价值观】
在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
二、教学重难点
【重点】
掌握加减消元法解方程组。
【难点】
正确的运用加减消元法解方程组。
三、教学过程
(一)导入新课
师:同学们,前面我们学习了解方程组,大家还记得是什么方法吗?
生:代入消元法
师:非常正确,下面同学们看看黑板上这道题如何做?
师:我看同学们都做出来了,你们都是用什么方法做出来的啊?哦,是前面的代入消元法,其实这道题他有一个非常简单的方法,一下子就可以计算出来,下面我们就一起来探讨下一种新的解方程组的方法-加减法消元解方程组
(二)生成新知
出示例题
师:刚才我们解题的时候用的代入消元,那同学们你们观察观察这组方程他们的的y的系数有什么特点,你能不能想出什么好的解题方法呢?请大家先自己独立思考,然后前后4人为一小组,给大家5分钟的时间,大家相互讨论交流下。
学生独立思考,尝试练习、解答,初步形成自己的解决方案。教师巡视,了解学生的学习情况,并及时指导;完成的同学,同学之间交流一下自己的解决问题的方法。然后小组内展示各自解决问题的方案。比一比谁的想法简洁,形成小组意见。
通过讨论学生可以得出如下结论:
上式中y的系数相同,当用②-①时,可以发现变量y刚好可以消除
师:大家都总结的非常到位,像这样在解方程组时,当x或者y的系数相同或者相反时,我们可以用两式相减或者相加的方式来消除其中一项,我们把这种方法叫做加减消元法。
师:那这个规律是不是适合于所有的题呢?下面我们就来拿到题来练练
师:请大家先自己在草稿本上演算一下,然后同桌之间相互讨论下,看看这道题应该如何解呢?
我看大家结果已经出来了,谁来分享一下你的答案呢?
生:有两种方法,一种是用带入消元,一种是用加减消元,加减消元的时候要把x或者y的系数变成一样的,所以①需要乘以3,
②需要乘以2,这样①②的y的系数就刚还是相反数,①+②就可以消去y。
师:这组同学归纳的真,大家都要像他们一样发现总结的学习知识。还有没同学有其他意见的?好,第二组你来说
生:也可以把x消掉,把①乘以5,②乘以3,这样x前面的系数就相等了,用①-②就可以消除x。
师:非常的不错,这组同学也总结的很正确。
(三)深化新知
提问:加减消元的时候到底消去哪个变量呢?
学生讨论汇报:看x或者y的系数,那个的系数比较简单易化成相同系数,就消去那个。
(四)应用新知
(五)小结作业
小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?
作业:想一想,生活中有哪些等量关系,列出两组,用今天的新的方法解出来,下节课给大家分享。
四、板书设计
教学目标
知识技能:
1.知道二元一次方程组的解的概念.
2.初步体会解二元一次方程组的基本思想----“消元”,并会用代入消元法解二元一次方程组.
数学思考:
经历探究二元一次方程组的解法过程,学会代入消元法解方程组。体会消元思想的运用,思考数学中“多元”化“一元”的思想与方法.
问题解决:
通过学习,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.并用代入法解方程组.
情感态度:
1.通过本节课的学习,感知消元,化未知为已知的数学思想,渗透化归的数学美.
2.通过探索解二元一次方程组的方法,培养学生合作交流的意识与探究精神.
教学重点:用代入法解二元一次方程组.
教学难点:方程组中两个未知数的系数都不是1,如何恰当选择其中一个未知数用另一个未知数表示,并使解法简单,需要一定的观察、分析、运算能力,因此是本节课的难点。
教学步骤
活动一:创设情境导入新课
【课堂引入】
采用多媒体展示上节课所提出的问题,并给出所列的方程组《代入消元法解二元一次方程组》教学设计.
提出问题:要解决这个问题,求出其中的x,y,怎样求方程组中未知数的值呢,即如何解方程组?
设计意图:通过复习引入,提出有待解决的问题,使学生明白学习目标.
活动二:小组探究交流,归纳总结新知
【探究】
回忆解决问题列出的方程2x+(45-x)=60和方程组《代入消元法解二元一次方程组》教学设计
(1)它们中的未知数x意义相同吗?方程组中的未知数y,与方程中哪个式子意义相同?
(2)方程组中的两个未知数,能否用一个未知数表示?能得出y=45-x,或x=45-y吗?
(3)能否将方程组化为方程2x+(45-x)=60.
这种将未知数的个数由多化少,逐一解决的思想是“消元”思想,也就是消去一个未知数,把解二元一次方程组化为解一元一次方程.
从一个方程中求出某一个未知数的表达式,再把它“代入”到另一个方程中,进行求解,这种方法叫做代入消元法,简称为代入法.基本思路是:
二元一次方程组 《代入消元法解二元一次方程组》教学设计 一元一次方程
解二元一次方程组的第一种解法——代入消元法,其主要步骤是:
第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.
第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程.
第三步:解这个一元一次方程,得到一个未知数的值.
第四步:回代求出另一个未知数的值.
第五步:把方程组的解表示出来.
设计意图:引导学生回忆、对比同一个问题建立的两个模型,既复习了旧知识,又把学生带入到新课的学习情境中,激发了学生的求知欲。引导学生分析、比较,有利于学生形成良好的思维习惯. 重视知识发生的过程,帮助学生掌握用代入法解二元一次方程组的全过程.
活动三:变式训练与提高
【应用举例】教材P100例1
《代入消元法解二元一次方程组》教学设计
例1 解方程组:
【变式训练】
变式一 用含有x的式子表示y
(1)2x-y=1;
(2)3x+2y=10.
《代入消元法解二元一次方程组》教学设计
变式二 解方程组.
《代入消元法解二元一次方程组》教学设计
变式三 解方程组.
【提示】选择方程②变形成2x=3y-85,代入到方程①中,即可消元求解.
设计意图:
1、让学生运用代入法解方程组,在积累解题经验的同时,体会如何正确选择方程进行适当的变形。
2、模仿改造试题可体现知识的延伸养成,更好地理解代入消元法.
【拓展提升】
《代入消元法解二元一次方程组》教学设计
【提示】用代入法将方程②代入到方程①中,求出x的值,然后再代入求出y的值,从而得出a,b的值.
《代入消元法解二元一次方程组》教学设计
设计意图:知识的综合与拓展提高解题技巧和能力
活动四:课堂总结反思
《代入消元法解二元一次方程组》教学设计
设计意图:通过让学生解决数学问题,将新知识融入学生已有的认知结构中.通过检测纠错,提高认识知识的效率,使学生能运用所学知识和技能解决问题,同时为学生提供充分发挥创造力的空间,更大地调动学生的积极性.
板书设计
3.3.2代入消元法
二元一次方程组的解
代入消元法:
主要步骤:
例1
投
影
区
学生活动区
教学反思:
①[授课流程反思]
在探究用代入消元法解方程组时,先回顾同一个问题列出一元一次方程与二元一次方程组的关系,以及未知数的意义后,提出代入“消元”的思想,充分让学生思考、交流,以便于理解为什么可以这样做。
②[讲授效果反思]
在学生掌握解方程组的“化归”思想后,训练解题的方法以及步骤,使学生能够熟练地掌握代入消元法解方程组.
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号