当前位置:首页 > 教案教学设计 > 数学教案

北师大版初中全等三角形教案

日期:2021-12-31

这是北师大版初中全等三角形教案,是优秀的数学教案文章,供老师家长们参考学习。

北师大版初中全等三角形教案

北师大版初中全等三角形教案第 1 篇

设计理念

教师由过去知识的传授者转变为学生学习活动的设计者和组织者,引导学生在自学文本的基础上自主探究、合作交流,与学生零距离接触。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,从而营造一个平等的、和谐的、宽松的良好氛围进行学习。同时,教师注意点拨引导,发挥学生“一帮一”合作学习的优势,培养学生良好的学习习惯。

学情分析

认知分析:学生已学过线段、角、相交线、平行线以及三角形的有关知识,初步掌握了简单说理的方法,为学习全等三角形的有关内容作了准备。

能力分析:学生已初步具备一定的归纳、猜想能力,但个别学生在理解、应用上还须借助老师、同学的帮助,通过教师的指导和同伴的帮助,也会有所收获。对于一小部分基础薄弱、自学能力稍差的学生要提供赏识性评价教学策略,给予个别关照以及适当的精神激励,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。

情感分析:多数学生对数学学习有一定的兴趣能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强;少数学生的学习主动性不够强,尚需通过营造一定的学习氛围,来加以带动。

基于以上分析,在学法上,引导学生采用自主探索与互相协作相结合的学习方式,尽量让每一个学生都能参与研究,并最终学会学习。

知识分析

学生已学过线段、角、相交线、平行线以及三角形的有关知识,初步掌握了简单说理的方法,为本节学习做好了准备。同时本节的学习可以丰富和加深学生对已学图形的认识,为学习其他图形知识打好基础。特别是平移、翻折、旋转前后的图形全等是运用全等形的概念得出来的,从而起到巩固新概念的作用。另一方面,掌握这一结论,对学生的某些情况下确定全等三角形的对应元素有帮助。

教学目标:

识与技能

1.知道什么是全等形、全等三角形及全等三角形的对应元素;能找出两个全等三角形的对应角、对应边;

2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;能够运用全等三角形的性质解决简单的问题。

过程与方法

1、经历全等三角形概念的建构过程,经历观察、操作、探究、归纳、总结等过程,获得全等三角形的性质和寻找对应变和对应角的方法。

2、在图形变换的实际操作过程中发展学生的空间观念,培养学生的集合直觉。

情感态度与价值观

让学生在观察、发现生活中的全等形和实际操作中获得全等三角形的体验;在探究运用全等三角形性质的过程中感受到数学的乐趣。

教学重点

探究全等三角形的性质.

教学难点

掌握两个全等三角形的对应角、对应边的寻找规律,迅速正确的指出两个全等三角形的对应元素。

教学方法

针对七年级学生的认知结构和心理特征,为了突出重点,突破难点,本课题的教学坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,以“引导发现,合作探究”教学法为主,辅之直观演示、讨论交流,让学生动手操作,动脑思考,动口交流,动心关注。

学法指导

本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间。通过本课的教学,在教师的组织引导下,倡导学生自主学习、尝试学习、探究学习、合作交流学习。

教学资源

借助PPT软件展示引例及变式训练题组,增大课堂容量,吸引学生眼球,最大限度地激发学生的学习兴趣,优化课堂结构,提高课堂教学效率。

教学评价

在本节中,学生同教师和其他同学共同操作、相互启发、促进、交流,教师适时肯定、给予鼓励与表扬。评价方式为:(1)课堂提问;(2)练习反馈;(3)在本节中,学生同教师和其他同学共同操作、相互启发、促进、交流,教师适时肯定、给予鼓励与表扬。评价方式为:(1)课堂提问;(2)练习反馈;(3)展示。既有学生的自评,又有师生、生生之间的互评,力求在评价中帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。

教学过程

一 创设情境,导入新课

(1)同一张底片洗出的同大小照片重叠在一起能重合吗?

(2)如果把这些图形叠合起来,会怎样呢?

(说明:能够完全重合的两个图形称为全等形)

(3)把全等图形用线连起来:

【教师活动】

1、提出问题(1)结合学生回答及章前图引出本章内容,板书课题。

2、出示问题(2)和(3),在学生思考并回答的基础上引出并板书节课题。

3、在本次活动中,教师应重点关注:学生注意力并及时评价学生的表现。

【学生活动】

1、按照要求依次进行观察猜想、操作确认。

2、回答老师提出的问题,参与对同伴表现情况的评价。

【设计意图】运用贴近学生生活的图案激发学生探究的兴趣。问题(1),引导学生从图形的形状与大小的角度去观察图形。图形全等在生活中大量存在,创设这样的问题情境,引起学生的有意注意,激发学生主动思考和联想;引导学生进一步联系生活,激发探究的欲望。

【媒体运用】

依次出示三个问题;动态展示相关问题的解答过程及结果,节时增效

二、诱导尝试, 探究新知

1、全等三角形概念教学

自学课本2-3页思考2以上的内容,(自学时间5分钟)回答下列问题

(1)什么是全等形?什么是全等三角形?请举例说明

(2)用硬纸板检验下列各图中的两个三角形是否全等?如果全等,试用符号语言表示。若不全等,请说明理由。

(3)把两个全等三角形叠放在一起,__________叫对应顶点,_____________叫对应边,__________________叫对应角。

(4)如图1,若△ABC ≌ △DEF,则AB的对应边是 .AC的对应边是 . BC的对应边是 ;∠A的对应角是 .∠B的对应角是 . ∠C的对应角是 .

(5)你能结合以上练习总结找全等三角形的对应元素的一般规律吗?

a.有公共边,则公共边为对应边

b.有公共角,则公共角为对应角

(对顶角为对应角)

c.最大边与最大边(最小边与最小边) 为对应边;最大角与最大角(最小角与最小角)为对应角

2、探索全等三角形的性质

提问:(1)全等三角形的对应边有什么关系?全等三角形的对应角有什么关系?(2)如图1,△ABC ≌ △DEF,请指出图中相等的线段和相等的角。

【教师活动】

1、出示自学提纲,提出要求,组织学生自学。

2、检查自学情况,相机板书全等形的、全等三角形的概念及对应元素找寻规律

3、结合学生回答,用课件动态展示相关问题的答案。

【学生活动】

1、按照要求自学课本内容,解答相关问题。

2、同桌合作完成问题(2),动手操作并互相讨论、探索,感知对折、旋转 、平移的两个三角形仍然全等。

3、独立完成问题(3)—(6),相互交流.

【教师活动】口头提出问题,课件演示叠合过程,相机板书性质。

【学生活动】思考教师提出的问题,观察演示过程,总结归纳全等三角形的性质,参与对同伴表现情况的评价。

【设计意图】

1、以学生活动为中心,充分发挥学生学习的主动性。

2、通过学生动手实践、分析、总结出图形变换的本质,加深对全等三角形概念的理解。

3、通过层层深入的设计问题,让学生一步步拨云见日,最终能找出两个全等三角形的对应角、对应边;

【媒体运用】

出示自学提纲;动态展示相关问题的解答过程及结果。

【设计意图】学会符号语言,使学生在动手实践的过程中理解全等三角形的性质。

【媒体运用】

呈现性质的图形及符号表示形式,增强直观性

三、变式训练,巩固新知

(一)选择填空

1、△ABC≌ △BAD,A和B、C和D是对应点,如果AB=5cm,BD=4cm,AD=6cm,那么BC的长是( )

(A)6cm (B)5cm

(C)4cm ( D)无法确定

2、 在上题中, ∠CAB的对应角是(

   )

 (A)∠DAB   (B) ∠ DBA  (C) ∠ DBC (D) ∠ CAD

整体优化县域初中数学推导型概念课有效性策略研究

(二)解答下列各题

3、如右图,已知△ABC≌△DEC,B和E,A和D是对应顶点,说出这两个三角形中相等的边和角。

整体优化县域初中数学推导型概念课有效性策略研究

4、如图,△ABC≌△DEC,CA和CD,CB和CE是对应边, ∠ ACD和∠BCE相等吗?为什么?

整体优化县域初中数学推导型概念课有效性策略研究

【教师活动】

1、课件呈现问题

2、根据学生回答,相机组织相互评价、矫正,并呈现解答过程。

[课件展示]1、依次展示问题。2、结合学生回答相机展示

巡视指导,师生互动,启发学生分析探索充分条件。

分组讨论,发表意见。

【设计意图】

本环节安排了两个梯次练习,其中题组一为概念辨析,旨在巩固全等三角形的性质及对应元素的确定方法;题组二是解答题,旨在检查学生能否从较为复杂的图形变换中检索出简单图形的能力,进一步加深学生对全等三角形对应元素的寻找能力,达到举一反三、触类旁通。

2、进一步强化了学生对性质的认识,又可以训练学生的发散思维,培养灵活运用知识的能力,增强学生的创新意识和创新能力。

【媒体运用】

呈现问题及及部分答案,验证学生解答过程,提高练习的时效性。

四、综合归纳,延展深化

通过这节课的学习,你有什么收获和体会?还有什么疑问吗?

【教师活动】

先引导学生自主小结的基础上,在学生小结的基础上进行概括小结:

【学生活动】

【设计意图】

使所学知识条理化、系统化;让学生在交流中共享,在反思中提升。

【媒体运用】再现本节知识要点。

五、推荐作业,补充升华

必做题:

习题12.1 1 ,2, 3;

选做题:

1、已知⊿ABC≌⊿DEF,且∠A=52º,∠B=31º, ED=10cm, ∠F=∠C,求∠F的度数与AB的长;

2、已知⊿ABC≌⊿DEF,⊿DEF的周长32cm,DE=9cm,EF=12cm,且∠E=∠B,求AC的长;

3、尽量画出两个全等的三角形所拼接的图形,并尝试寻求这两个全等三角形的对应顶点、对应边、对应角。

【教师活动】

课件展示作业题

【学生活动】按照要求自主完成作业,及时弥补

【设计意图】

为使学生的主体作用得以有效发挥,尊重学生的个体差异,为不同学生的发展创造条件,作业层推荐、分类要求。

【媒体运用】PPT课件呈现选做题。

七、板书设计:

课题

一、概念

1、全等形

2、全等三角形

二、方法

1、全等三角形表示:⊿ABC≌⊿DEF

2、找对应元素的规律:

a.公共边 整体优化县域初中数学推导型概念课有效性策略研究 对应边

b.公共角 对应角 (对顶角为对应角)

c.大边(角)对大边(角);小边(角)对小边(角)

北师大版初中全等三角形教案第 2 篇

一、教学目标

【知识与技能】

了解全等形和全等三角形的概念,掌握全等三角形的性质,能用符号正确表示两个三角形全等,能找出全等三角形的对应元素。

【过程与方法】

在图形变换以及实际操作的过程中发展学生的空间观念,提高几何直觉和识图能力。

【情感态度与价值观】

通过自主学习的发展体验获取数学知识的感受,提高勇于创新,多方位审视问题的创造技巧。

二、教学重难点

【重点】

全等三角形的概念、性质及对应元素的确定。

【难点】

全等三角形对应元素的识别。

三、教学过程

(一)导入新课

欣赏一组图片,提出问题

提问1:你能从图中找出形状和大小都相同的图形吗?其中一个图形是另一个图形如何变化而来?他们能完全重合吗?你能列举出一些类似的例子吗?

(二)生成新知

由上图形成全等的概念:形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等三角形。

多媒体演示三中全等变换(全等、翻折、旋转)并提出问题:平移、翻折、旋转前后得到的三角形全等吗?

接下来学生小组活动:多媒体投影要求:请你用事前准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;在练习本上画出这些图形,标上字母,并在小组内交流;指出这些图形中的对应顶点、对应边、对应角。

多媒体展示学生可能得到的图形,寻找对应元素有什么方法和规律吗?学生思考交流后师生共同总结归纳、板书。

提问:全等三角形的对应边、对应角有什么数量关系?

(三)应用新知

(1)写出其他对应边及对应角;

(2)求线段NM及线段HG 的长度。

(四)小结作业

小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?

作业:想一想,生活中还有哪些事物是全等的?

四、板书设计

《全等三角形》教案

五、教学反思

以上是《全等三角形》教案,希望对各位考生有所帮助。

北师大版初中全等三角形教案第 3 篇

  一、教材分析

  本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节.这是全章的开篇,也是全等条件的基础.它是继线段、角、相交线与平行线及三角形有关知识之后出现的.通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用.

  教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质.

  二、教学目标分析

  知识与技能

  1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法.

  2.能准确确定全等三角形的对应元素.

  3.掌握全等三角形的性质.

  过程与方法

  1.通过找出全等三角形的对应元素,培养学生的识图能力.

  2.能利用全等三角形的概念、性质解决简单的数学问题.

  情感、态度与价值观

  通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.

  三、教学重点、难点

  重点:全等三角形的概念、性质及对应元素的确定.

  难点:全等三角形对应元素的确定.

  四、学情分析

  学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的'分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期.为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识.

  五、教法与学法

  本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合.

  六、教学教程

  Ⅰ.课题引入

  1.电脑显示

  问题:各组图形的形状与大小有什么特点?

  一般学生都能发现这两个图形是完全重合的。

  归纳:能够完全重合的两个图形叫做全等形。

  2.学生动手操作

  ⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。

  ⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?

  (学生分组讨论、提出方法、动手操作)

  3.板书课题:全等三角形

  定义:能够完全重合的两个三角形叫做全等三角形

  “全等”用“≌”表示,读着“全等于”

  如图中的两个三角形全等,记作:△ABC≌△DEF

  Ⅱ.全等三角形中的对应元素

  1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?

  2.学生讨论、交流、归纳得出:

  ⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。

  ⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。

  Ⅲ. 全等三角形的性质

  1.观察与思考:

  寻找甲图中两三角形的对应元素,它们的对应边

  有什么关系?对应角呢?

  (引导学生从全等三角形可以完全重合出发找等量关系)

  全等三角形的性质:

  全等三角形的对应边相等.

  全等三角形的对应角相等.

  2.用几何语言表示全等三角形的性质

  如图:∵ABC≌ DEF

  ∴AB=DE,AC=DF,BC=EF

  (全等三角形对应边相等)

  ∠A=∠D,∠B=∠E,∠C=∠F

  (全等三角形对应角相等)

  Ⅳ.探求全等三角形对应元素的找法

  1.动画(几何画板)演示

  (1).图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?

  归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.

  (2).说出每个图中各对全等三角形的对应边、对应角

  归纳:从运动的角度可以很轻松地解决找对应元素的问题.可见图形转换的奇妙.

  3. 归纳:找对应元素的常用方法有两种:

  (1)从运动角度看

  a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.

  b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.

  c.平移法:沿某一方向推移使两三角形重合来找对应元素.

  (2)根据位置元素来推理

  a.有公共边的,公共边是对应边;

  b.有公共角的,公共角是对应角;

  c.有对顶角的,对顶角是对应角;

  d.两个全等三角形最大的边是对应边,最小的边也是对应边;

  e.两个全等三角形最大的角是对应角,最小的角也是对应角;

  Ⅴ.课堂练习

  练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,

  你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ?

  练习2.△ABC≌△FED

  ⑴写出图中相等的线段,相等的角;

  ⑵图中线段除相等外,还有什么关系吗?请与同伴交

  流并写出来.

  Ⅵ.小结

  1.这节课你学会了什么?有哪些收获?有什么感受?

  2.通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.

  Ⅶ.作业

  课本第92页1、2、3题

北师大版初中全等三角形教案第 4 篇

  【课前准备】

  1.定义:能够的两个三角形叫全等三角形。

  2.全等三角形的性质,全等三角形的判定方法见下表。

  【例题讲解】

  一.挖掘“隐含条件”判全等

  如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)

  1.如图AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由.

  变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD

  2.如图点D在AB上,点E在AC上,CD与BE相交于点O,

  且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠CD的度数与BE的长。

  3.如图若OB=OD,∠A=∠C,若AB=3cm,求CD的长。

  变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD

  二.添条件判全等

  1.如图,已知AD平分∠BAC,要使△ABD≌△ACD,

  根据“SAS”需要添加条件;

  根据“ASA”需要添加条件;

  根据“AAS”需要添加条件.

  2.已知AB//DE,且AB=DE,

  (1)请你只添加一个条件,使△ABC≌△DEF,

  你添加的条件是.

  三.熟练转化“间接条件”判全等

  1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?

  为什么?

  2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?

  3.“三月三,放风筝”,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明.

  巩固练习:如图,在中,,沿过点B的一条直线BE

  折叠,使点C恰好落在AB变的中点D处,则∠A的度数.

  4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D

  【当堂反馈】

  1.(2006攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为全等三角形是△≌△

  2.如图,已知AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE

  3.如图,已知AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC

  4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L的`垂线,垂足分别为M、N

  (1)你能找到一对三角形的全等吗?并说明.

  (2)BM,CN,MN之间有何关系?

  若将直线l旋转到如下图的位置,其他条件不变,那么上题的结论是否依旧成立?

  【课后作业】

  1.如图,要用“SAS”说明ΔABC≌ΔADC,若AB=AD,则需要添加的条件是.

  要用“ASA”说明ΔABC≌ΔADC,若∠ACB=∠ACD,则需要添加的条件是.

  2..如图,在ΔABC中,AD⊥BC,CE⊥AB.垂足分别为D.E,AD.CE交于点H,请你添加一个适当的条件:,使ΔAEH≌ΔCEB.

  (第3题)

  (第4题)(第5题)(第6题)

  3.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有()

  A..2对B.3对C.4对D.5对

  4.如图,ΔABC中,AB=AC,BE=EC,则由“SSS”可判定()

  A.ΔABD≌ΔACDB.ΔABE≌ΔACEC.ΔBED≌ΔCEDD.以上答案都不对

  5.如图,Rt△ABC中,∠C=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形.(保留作图痕迹,不要求写作法和证明).

  6.如图,一个六边形钢架ABCDEF,由6条钢管连接而成,为使这一钢架稳固,请你用3条钢管使它不能活动,你能设计两种不同的方案吗?

  7:如图11-9在△ABC中.⑴分别以AB、AC为边向形外作正方形ABDE、ACFG.

  试说明:①CE=BG;②CE⊥BG;

  ⑵如图11-10分别以AB、AC为边向形外作正三角形△ABD、△ACE.

  试说明:①CD=BE;②求CD和BE所成的锐角的度数.

  【拓展延伸】

  如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF

  (2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号