日期:2022-01-03
这是分式方程的应用教案湘教版,是优秀的数学教案文章,供老师家长们参考学习。
教学目标:
1、会解有关工作问题的应用题.
2、通过对实际问题的剖析,进一步提高学生的分析问题和解决问题的能力.
教学重点:
列分式方程解决工作问题.
教学难点:
在复杂的数量关系中,通过对题目的分析与综合,找出相等关系.为了解决教学难点,本节课应抓住工作量、工作时间和工作效率三者之间的关系,根据对这三者之间的关系的分析找出已知量和未知量,列出方程.
教学程序:
一、新课引入:
1.解决行程问题的关键是什么?应抓住哪些量的关系?
2.列分式方程解应用题,应如何看待所求出的解?
3.在工作问题中,工作量、工作时间、工作效率三者间的关系是什么?
二、新知探究:
例1某农场开挖一条长960米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务.原计划每天挖多少米?
分析:(1)本题中给出了三个量,分别是工作量,工作时间,工
(2)寻找题目中的相等关系,本题的相等关系比较明显
实际工作时间=原计划工作时间-4.(或其它表示相等关系式的等式)
(3)如果设原计划每天挖x米,那么实际开工后每天挖(x+20)
三、巩固新知:
教材P.49中3、4、5.
四、小结新知:
教师可以指导学生进行总结
本节课学习的主要内容是分式方程的应用之二——工作问题,在解决工作问题时,要抓住“工作量、工作效率及工作时间”这三要素和它们之间的关系,如果问题中没有明确的工作量,一般应设总工作量为1.
五、作业
教材P.51中6、7.
教学目标
1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;
2.通过列分式方程解应用题,渗透方程的思想方法,第三册分式方程的应用。
教学重点和难点
重点:列分式方程解应用题.
难点:根据题意,找出等量关系,正确列出方程.
教学过程设计
一、复习
例 解方程:
(1)2x+xx+3=1; (2)15x=2×15 x+12;
(3)2(1x+1x+3)+x-2x+3=1.
解 (1)方程两边都乘以x(3+3),去分母,得
2(x+3)+x2=x2+3x,即2x-3x=-6
所以 x=6.
检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.
(2)方程两边都乘以x(x+12),约去分母,得
15(x+12)=30x.
解这个整式方程,得
x=12.
检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根.
(3)整理,得
2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,
即 2x+xx+3=1.
方程两边都乘以x(x+3),去分母,得
2(x+3)+x2=x(x+3),
即 2x+6+x2=x2+3x,
亦即 2x-3x=-6.
解这个整式方程,得 x=6.
检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.
二、新课
例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?
请同学根据题意,找出题目中的等量关系.
答:骑车行进路程=队伍行进路程=15(千米);
骑车的速度=步行速度的2倍;
骑车所用的时间=步行的时间-0.5小时.
请同学依据上述等量关系列出方程.
答案:
方法1 设这名学生骑车追上队伍需x小时,依题意列方程为
15x=2×15 x+12.
方法2 设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为
15x-15 2x=12.
解 由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程.
方程两边都乘以2x,去分母,得
30-15=x,
所以 x=15.
检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意.
所以骑车追上队伍所用的时间为15千米 30千米/时=12小时.
答:骑车追上队伍所用的时间为30分钟.
指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离 时间.
如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按
速度找等量关系列方程,所列出的方程都是分式方程.
例2 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?
分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是
s=mt,或t=sm,或m=st.
请同学根据题中的等量关系列出方程.
答案:
方法1 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3.依题意,列方程为
2(1x+1x3)+x2-xx+3=1.
指出:工作效率的意义是单位时间完成的工作量.
方法2 设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程
2x+xx+3=1.
方法3 根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程
1-2x=2x+3+x-2x+3.
用方法1~方法3所列出的方程,我们已在新课之前解出,这里就不再解分式方程了.重点是找等量关系列方程.
三、课堂练习
1.甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数.
2.A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2:5,求两辆汽车的速度.
答案:
1.甲每小时加工15个零件,乙每小时加工20个零件.
2.大,小汽车的速度分别为18千米/时和45千米/时.
四、小结
1.列分式方程解应用题与列一元一次方程解应用题的'方法与步骤基本相同,不同点是,解分式方程必须要验根.一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意.原方程的增根和不符合题意的根都应舍去.
2.列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数.但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数.在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷.例如在课堂练习中的第2题,若题目的条件不变,把问题改为求大、小两辆汽车从A地到达B地各用的时间,如果设直接未知数,即设,小汽车从A地到B地需用时间为x小时,则大汽车从A地到B地需(x+5-12)小时,依题意,列方程
135 x+5-12:135x=2:5.
解这个分式方程,运算较繁琐.如果设间接未知数,即设速度为未知数,先求出大、小两辆汽车的速度,再分别求出它们从A地到B地的时间,运算就简便多了.
五、作业
1.填空:
(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;
(2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;
(3)把a千克的盐溶在b千克的水中,那么在m千克这种盐水中的含盐量为______千克.
2.列方程解应用题.
(1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时.已知他第二次加工效率是第一次的2.5倍,求他第二次加工时每小时加工多少零件?
(2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时?
(3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?
(4)A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知两车的速度之比是5:2,求两辆汽车各自的速度.
答案:
1.(1)mn m+n; (2)m a-b-ma; (3)ma a+b.
2.(1)第二次加工时,每小时加工125个零件.
(2)步行40千米所用的时间为40 4=10(时).答步行40千米用了10小时.
(3)江水的流速为4千米/时.
《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。
教师作为数学教学主导,在设计数学活动时要遵循以下原则:
一、根据学生的年龄特征和认知特点组织教学。
二、重视培养学生的应用意识和实践能力。
1、让学生在现实情境和已有的生活和知识经验中体验和理解数学。
2、培养学生应用数学的意识和提高解决问题的能力。
三、重视引导学生自主探索,培养学生的创新精神。
1、引导学生动手实践、自主探索和合作交流。
2、鼓励学生解决问题策略的多样化。
四、教师对教学目标,难点,重点把握要恰当、具体。
数的计算非常重要,计算是帮助我们解决问题的工具,只有在具体的情境中才能让学生真正认识计算的作用。首先应当让学生理解的是面对具体的情境,确定是否需要计算,然后再确定需要什么样的计算方法。口算、笔算、估算、计算器和计算机都是供学生选择的方式,都可以达到算出结果的目的。
一、设计思想:初中数学说课稿
数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。
处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动 。
根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。
网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习-总结提高
二、背景分析:
(一)学情分析:
内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》
学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。
本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。
(二)内容分析:
本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。
通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意
识,渗透类比转化思想。
(三)教学方式:自学导读—同伴互助—精讲精练
(四)教学媒体:Midea---Class纯软多媒体教学网 几何画板
三、教学目标:初中数学说课稿
知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。
过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。
情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。
教学重点:解分式方程的基本思路和解法。
教学难点:理解分式方程可能产生增根的原因。
设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。
四、板书设计:
a不是分式方程的解
(二)学习方法:类比与转化
教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。
五、教学过程:
活动1:创设情境,列出方程
设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美-激励启迪。
设计说明:通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。
活动2:总结定义,探究解法初中数学说课稿
使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。
教学思考:再一次体现了对全章进行整体设计的好处,在学习16.1分式和16.2分式的运算时,几乎每一节课都运用类比的思想-分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:一、拓展内容要与所学内容有有机联系。二、拓展内容要符合学生实际认知水平,不要任意拔高。三、拓展内容要适量,不要信息过载。
活动3:讲练结合,分析增根
活动5:布置作业,深化巩固(略)
教学目标
(一)知识与技能
理解分式方程与整式方程的区别,并掌握解分式方程的一般步骤。
(二)过程与方法
通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤,使学生进一步了解数学思想中的"转化"思想 。
(三)情感、态度与价值观
培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。
教学重点:探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤
教学难点 :探索分式方程产生增根的原因。
教学过程
一.创设情境,导入新课:
为帮助四川受灾的人们重建家园,某中学号召同学们自愿捐款。已知第一次捐款总额为2000元,第二次捐款总额为2150元,第二次捐款人数比第一次多15人,而且两次人均捐款额恰好相等。
根据以上信息你能分别求出两次捐款的人数吗?
若设第一次捐款人数为X人,第二次捐款人数为 ( ) 人。
根据相等关系列方程为( )。
这个方程的分母中含有未知数,与以前学过的方程不同,这就是我们这节课要学习的分式方程。(板书课题)
二.新课学习:
(一).分式方程的定义:
分母中含有未知数的方程叫做分式方程
以前学过的像一元一次方程、二元一次方程等这类分母中不含有未知数的方程叫整式方程
反馈练习
(二).探索分式方程的解法
1.回顾整式方程的解法
解方程 (解上面练习中的第三题)
师生共同回顾:解整式方程的步骤
(1)去分母,(2)去括号, (3)移项, (4)合并同类项, (5)化未知x的系数为1
2.如何解分式方程呢?
(学生尝试完成,然后集体补充步骤)
解方程:2000∕X=2150/X+15
解:方程两边同时乘以X(X+15),得
2000(X+15)=2150X
解这个整式方程,得
x=200
则200+15=215
检验:把x=200代入原方程,
因为 左边=10
右边=10
所以 左边=右边
所以x=200是原方程的解。
3.归纳解分式方程的步骤
一是去分母,二是解整式方程,三是检验
4.例题解方程:
(生独立完成,师指导)
分式方程的增根:不适合原方程的整式方程的根,叫原方程的增根.
师:解分式方程必须进行检验!
[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?
[生]最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去。
三.应用升华
四.小结
本节课我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可,我明白了分式方程转化为整式方程为什么会产生增根。
《分式方程》知识点总结
知识点精讲
1.分式方程:分母中含有
的方程叫分式方程.
2.解分式方程的一般步骤:
(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程;
(2)解这个整式方程;
(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.
3. 用换元法解分式方程的一般步骤:
① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.
4.分式方程的应用:
分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:
(1)检验所求的解是否是所列 ;(2)检验所求的解是否 .
5.易错知识辨析:
(1)去分母时,不要漏乘没有分母的项.
(2) 解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.
(3)如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.
三.例题分析与跟踪训练
知识点1 分式方程解法
例1解分式方程:
分析:按照去分母、移项、合并同类项、系数化为1的步骤解分式方程,对得到的方程的解一定要检验是否为增根。
解:去分母,得
解得
经检验 是原方程的解
所以原方程的解是 .
方法点拨:对求出的方程的解一定要进行检验,此点最易忽略。
跟踪训练1:分式方程 的解为( )
A.1 B.-1 C.-2 D.-3
知识点2 增根的意义
例2若关于 的分式方程 无解,则 .
分析:本题考查了分式方程增根的意义。根据分式方程求解出的未知数的值,若使分式方程任一分母为零,则为增根,即原方程无解。
解:1或-2
方法点拨:理解分式方程增根的意义是解答此类问题的关键。
跟踪训练2:关于x的方程 的解是正数,则a的取值范围是
A.a>-1 B.a>-1且a≠0
C.a<-1 D.a<-1且a≠-2
知识点3换元法解分式方程
例3:用换元法解分式方程时,如果设 ,将原方程化为关于 的整式方程,那么这个整式方程是( )
A. B.
C. D.
分析: 利用转化思想,将代入原分式方程,并进行去分母以转化为整式方程。
解:选A
方法点拨:利用转化思想,将复杂的分式方程转化为整式方程,在使用换元法时要注意去分母时,最简公分母的选择。
跟踪训练3:解方程 时,若设 ,则方程可化为 .
知识点4 分式方程的应用
例4:在某铁路工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?
分析:设甲工程队单独完成任务需 天,则乙工程队单独完成任务需 天,甲、乙所做的任务总和为总工程。
解:依题意得 .
化为整式方程得
解得 或 .
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号