当前位置:首页 > 教案教学设计 > 数学教案

圆周角教案青岛版

日期:2022-01-17

这是圆周角教案青岛版,是优秀的数学教案文章,供老师家长们参考学习。

圆周角教案青岛版

圆周角教案青岛版第 1 篇

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:及其应用.因再次体现了圆的轴对称*,它为*线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.

难点:与有关的*和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.

2、教法建议

本节内容需要一个课时.

(1)在教学中,组织学生自主观察、猜想、*,并深刻剖析的基本图形;对重要的结论及时总结;

(2)在教学中,以“观察——猜想——*——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.

教学目标

1.理解切线长的概念,掌握;

2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.

3.通过对定理的猜想和*,激发学生的学习兴趣,调动学生的学习积极*,树立科学的学习态度.

教学重点:

是教学重点

教学难点:

的灵活运用是教学难点

教学过程设计:

(一)观察、猜想、*,形成定理

1、切线长的概念.

如图,p是⊙o外一点,pa,pb是⊙o的两条切线,我们把线段pa,pb叫做点p到⊙o的切线长.

引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.

2、观察

利用电脑变动点p的位置,观察图形的特征和各量之间的关系.

3、猜想

引导学生直观判断,猜想图中pa是否等于pb.pa=pb.

4、*猜想,形成定理.

猜想是否正确。需要*.

组织学生分析*方法.关键是作出辅助线oa,ob,要*pa=pb.

想一想:根据图形,你还可以得到什么结论?

∠opa=∠opb(如图)等.

:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.

5、归纳:

把前面所学的切线的5条*质与一起归纳切线的*质

6、的基本图形研究

如图,pa,pb是⊙o的两条切线,a,b为切点.直线op交⊙o于点d,e,交ap于c

(1)写出图中所有的垂直关系;

(2)写出图中所有的全等三角形;

(3)写出图中所有的相似三角形;

(4)写出图中所有的等腰三角形.

说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.

(二)应用、归纳、反思

例1、已知:如图,p为⊙o外一点,pa,pb为⊙o的切线,

a和b是切点,bc是直径.

求*:ac∥op.

分析:从条件想,由p是⊙o外一点,pa、pb为⊙o的切线,a,b是切点可得pa=pb,∠apo=∠bpo,又由条件bc是直径,可得ob=oc,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线ab.

从结论想,要*ac∥op,如果连结ab交op于o,转化为*ca⊥ab,op⊥ab,或从od为△abc的中位线来考虑.也可考虑通过平行线的判定定理来*,可获得多种*法.

*法一.如图.连结ab.

pa,pb分别切⊙o于a,b

∴pa=pb∠apo=∠bpo

∴op⊥ab

又∵bc为⊙o直径

∴ac⊥ab

∴ac∥op(学生板书)

*法二.连结ab,交op于d

pa,pb分别切⊙o于a、b

∴pa=pb∠apo=∠bpo

∴ad=bd

又∵bo=do

∴od是△abc的中位线

∴ac∥op

*法三.连结ab,设op与ab弧交于点e

pa,pb分别切⊙o于a、b

∴pa=pb

∴op⊥ab

∴=

∴∠c=∠pob

∴ac∥op

反思:教师引导学生比较以上*法,激发学生的学习兴趣,培养学生灵活应用知识的能力.

例2、圆的外切四边形的两组对边的和相等.

(分析和解题略)

反思:(1)例3事实上是圆外切四边形的一个重要*质,请学生记住结论.(2)圆内接四边形的*质:对角互补.

p120练习:

练习1填空

如图,已知⊙o的半径为3厘米,po=6厘米,pa,pb分别切⊙o于a,b,则pa=_______,∠apb=________

练习2已知:在△abc中,bc=14厘米,ac=9厘米,ab=13厘米,它的内切圆分别和bc,ac,ab切于点d,e,f,求af,ad和ce的长.

分析:设各切线长af,bd和ce分别为x厘米,y厘米,z厘米.后列出关于x,y,z的方程组,解方程组便可求出结果.

(解略)

反思:解这个题时,除了要用三角形内切圆的概念和之外,还要用到解方程组的知识,是一道综合*较强的计算题.通过对本题的研究培养学生的综合应用知识的能力.

(三)小结

1、提出问题学生归纳

(1)这节课学习的具体内容;

(2)学习用的数学思想方法;

(3)应注意哪些概念之间的区别?

2、归纳基本图形的结论

3、学习了用代数方法解决几何问题的思想方法.

(四)作业

教材p131习题7.4a组1.(1),2,3,4.b组1题.

探究活动

图中找错

你能找出(图1)与(图2)的错误所在吗?

在图2中,p1a为⊙o1和⊙o3的切线、p1b为⊙o1和⊙o2的切线、p2c为⊙o2和⊙o3的切线.

提示:在图1中,连结pc、pd,则pc、pd都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点o应在圆上.

在图2中,设p1a=p1b=a,p2b=p2c=b,p3a=p3c=c,则有

a=p1a=p1p3+p3a=p1p3+c①

c=p3c=p2p3+p3a=p2p3+b②

a=p1b=p1p2+p2b=p1p2+b③

将②代人①式得

a=p1p3+(p2p3+b)=p1p3+p2p3+b,

∴a-b=p1p3+p2p3

由③得a-b=p1p2得

∴p1p2=p2p3+p1p3

∴p1、p2、p3应重合,故图2是错误的。

圆周角教案青岛版第 2 篇

1、教材分析

数学教案-切线长定理

(1)知识结构

(2)重点、难点分析

重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.

难点:与切线长定理有关的证明和计算问题.如120页练习题中第3题,它不仅应用切线长定理,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.

2、教法建议

本节内容需要一个课时.

(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结;

(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.

教学目标

1.理解切线长的概念,掌握切线长定理;

2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.

3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.

教学重点:

切线长定理是教学重点

教学难点 :

切线长定理的灵活运用是教学难点

教学过程 设计:

(一)观察、猜想、证明,形成定理

1、切线长的概念.

如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.

引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.

2、观察

利用电脑变动点P 的位置,观察图形的特征和各量之间的关系.

3、猜想

引导学生直观判断,猜想图中PA是否等于PB. PA=PB.

4、证明猜想,形成定理.

猜想是否正确。需要证明.

组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.

想一想:根据图形,你还可以得到什么结论?

∠OPA=∠OPB(如图)等.

切线长定理:从圆外一点引圆的'两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.

5、归纳:

把前面所学的切线的5条性质与切线长定理一起归纳切线的性质

6、切线长定理的基本图形研究

如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C

(1)写出图中所有的垂直关系;

(2)写出图中所有的全等三角形;

(3)写出图中所有的相似三角形;

(4)写出图中所有的等腰三角形.

说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.

(二)应用、归纳、反思

例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,

A和B是切点,BC是直径.

求证:AC∥OP.

分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.

从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP ⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.

证法一.如图.连结AB.

PA,PB分别切⊙O于A,B

∴PA=PB∠APO=∠BPO

∴ OP ⊥AB

又∵BC为⊙O直径

∴AC⊥AB

∴AC∥OP (学生板书)

证法二.连结AB,交OP于D

PA,PB分别切⊙O于A、B

∴PA=PB∠APO=∠BPO

∴AD=BD

又∵BO=DO

∴OD是△ABC的中位线

∴AC∥OP

证法三.连结AB,设OP与AB弧交于点E

PA,PB分别切⊙O于A、B

∴PA=PB

∴ OP ⊥AB

∴ =

∴∠C=∠POB

∴AC∥OP

反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.

例2、 圆的外切四边形的两组对边的和相等.

(分析和解题略)

反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补.

P120练习:

练习1 填空

如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,∠APB=________

练习2 已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长.

分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米.后列出关于x , y,z的方程组,解方程组便可求出结果.

(解略)

反思:解这个题时,除了要用三角形内切圆的概念和切线长定理之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力.

(三)小结

1、提出问题学生归纳

(1)这节课学习的具体内容;

(2)学习用的数学思想方法;

(3)应注意哪些概念之间的区别?

2、归纳基本图形的结论

3、学习了用代数方法解决几何问题的思想方法.

(四)作业

教材P131习题7.4A组1.(1),2,3,4.B组1题.

探究活动

图中找错

你能找出(图1)与(图2)的错误所在吗?

在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线.

提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上.

在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有

a=P1A=P1P3+P3A=P1P3+ c ①

c=P3C=P2P3+P3A=P2P3+ b ②

a=P1B=P1P2+P2B=P1P2+ b ③

将②代人①式得

a =P1P3+(P2P3+ b)=P1P3+P2P3+ b,

∴a-b=P1P3+P2P3

由③得a-b=P1P2得

∴P1P2=P2P3+ P1P3

∴P1、P 2 、P3应重合,故图2是错误的.

数学教案-切线长定理

圆周角教案青岛版第 3 篇

  第一课时 两圆的公切线(一)

  教学目标:

  (1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;

  (2)培养学生的归纳、/article/index.html>总结能力;

  (3)通过两圆外公切线长的求法向学生渗透“转化”思想.

  教学重点:

  理解两圆相切长等有关概念,两圆外公切线的求法.

  教学难点:

  两圆外公切线和两圆外公切线长学生理解的不透,容易混淆.

  教学活动设计

  (一)实际问题(引入)

  很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象.(这里是一种简单的数学建模,了解数学产生与实践)

  (二)两圆的公切线概念

  1、概念:

  教师引导学生自学.给出两圆的外公切线、内公切线以及公切线长的定义:

  和两圆都相切的直线,叫做两圆的公切线.

  (1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线.

  (2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线.

  (3)公切线的长:公切线上两个切点的距离叫做公切线的长.

  2、理解概念:

  (1)公切线的长与切线的长有何区别与联系?

  (2)公切线的长与公切线又有何区别与联系?

  (1)公切线的长与切线的长的概念有类似的地方,即都是线段的长.但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点.

  (2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量.

  (三)两圆的位置与公切线条数的关系

  组织学生观察、概念、概括,培养学生的学习能力.添写教材P143练习第2题表.

  (四)应用、反思、/article/index.html>总结

  例1、已知:⊙O1、⊙O2的半径分别为2cm和7cm,圆心距O1O2=13cm,AB是⊙O1、⊙O2的外公切线,切点分别是A、B.求:公切线的长AB.

  分析:首先想到切线性质,故连结O1A、O2B,得直角梯形AO1O2B.一般要把它分解成一个直角三角形和一个矩形,再用其性质.(组织学生分析,教师点拨,规范步骤)

  解:连结O1A、O2B,作O1A⊥AB,O2B⊥AB.

  过 O1作O1C⊥O2B,垂足为C,则四边形O1ABC为矩形,

  于是有

  O1C⊥C O2,O1C= AB,O1A=CB.

  在Rt△O2CO1和.

  O1O2=13,O2C= O2B- O1A=5

  AB= O1C=(cm).

  反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法.

  例2*、如图,已知⊙O1、⊙O2外切于P,直线AB为两圆的公切线,A、B为切点,若PA=8cm,PB=6cm,求切线AB的长.

  分析:因为线段AB是△APB的一条边,在△APB中,已知PA和PB的长,只需先证明△PAB是直角三角形,然后再根据勾股定理,使问题得解.证△PAB是直角三角形,只需证△APB中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过P作两圆的公切线CD如图,因为AB是两圆的公切线,所以∠CPB=∠ABP,∠CPA=∠BAP.因为∠BAP+∠CPA+∠CPB+∠ABP=180°,所以2∠CPA+2∠CPB=180°,所以∠CPA+∠CPB=90°,即∠APB=90°,故△APB是直角三角形,此题得解.

  解:过点P作两圆的公切线CD

  ∵ AB是⊙O1和⊙O2的切线,A、B为切点

  ∴∠CPA=∠BAP ∠CPB=∠ABP

  又∵∠BAP+∠CPA+∠CPB+∠ABP=180°

  ∴ 2∠CPA+2∠CPB=180°

  ∴∠CPA+∠CPB=90° 即∠APB=90°

  在 Rt△APB中,AB2=AP2+BP2

  说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系.

  (五)巩固练习

  1、当两圆外离时,外公切线、圆心距、两半径之差一定组成( )

  (A)直角三角形 (B)等腰三角形 (C)等边三角形 (D)以上答案都不对.

  此题考察外公切线与外公切线长之间的差别,答案(D)

  2、外公切线是指

  (A)和两圆都祖切的直线 (B)两切点间的距离

  (C)两圆在公切线两旁时的公切线 (D)两圆在公切线同旁时的公切线

  直接运用外公切线的定义判断.答案:(D)

  3、教材P141练习(略)

  (六)小结(组织学生进行)

  知识:两圆的公切线、外公切线、内公切线及公切线的长概念;

  能力:归纳、概括能力和求外公切线长的能力;

  思想:“转化”思想.

  (七)作业:P151习题10,11.

  第二课时 两圆的公切线(二)

  教学目标:

  (1)掌握两圆内公切线长的求法以及公切线与连心线的夹角或公切线的交角;

  (2)培养的迁移能力,进一步培养学生的归纳、/article/index.html>总结能力;

  (3)通过两圆内公切线长的求法进一步向学生渗透“转化”思想.

  教学重点:

  两圆内公切线的长及公切线与连心线的夹角或公切线的交角求法.

  教学难点:

  两圆内公切线和两圆内公切线长学生理解的不透,容易混淆.

  教学活动设计

  (一)复习基础知识

  (1)两圆的`公切线概念:公切线、内外公切线、内外公切线的长.

  (2)两圆的位置与公切线条数的关系.(构成数形对应,且一一对应)

  (二)应用、反思

  例1、(教材例2)已知:⊙O1和⊙O2的半径分别为4厘米和2厘米,圆心距 为10厘米,AB是⊙O1和⊙O2的一条内公切线,切点分别是A,B.

  求:公切线的长AB。

  组织学生分析,迁移外公切线长的求法,既培养学生解决问题的能力,同时也培养学生学习的迁移能力.

  解:连结O1A、O2B,作O1A⊥AB,O2B⊥AB.

  过 O1作O1C⊥O2B,交O2B的延长线于C,

  则O1C= AB,O1A=BC.

  在Rt△O2CO1和.

  O1O2=10,O2C= O2B+ O1A=6

  ∴O1C= (cm).

  ∴AB=8(cm)

  反思:与外离两圆的内公切线有关的计算问题,常构造如此题的直角梯行及直角三角形,在Rt△O2CO1中,含有内公切线长、圆心距、两半径和重要数量.注意用解直角三角形的知识和几何知识综合去解构造后的直角三角形.

  例2 (教材例3)要做一个图那样的矿型架,将两个钢管托起,已知钢管的外径分别为200毫米和80毫米,求V形角α的度数.

  解:(略)

  反思:实际问题经过抽象、化简转化成数学问题,应用数学知识来解决,这是解决实际问题的重要方法.它属于简单的数学建模.

  组织学生进行,教师引导.

  归纳:(1)用解直角三角形的有关知识可得:当公切线长l、两圆的两半径和R+r、圆心距d、两圆公切线的夹角α四个量中已知两个量时,就可以求出其他两个量.

  , ;

  (2)上述问题可以通过相似三角形和解三角形的知识解决.

  (三)巩固训练

  教材P142练习第1题,教材P145练习第1题.

  学生独立完成,教师巡视,发现问题及时纠正.

  (四)小结

  (1)求两圆的内公切线,“转化”为解直角三角形问题.公切线长、圆心距、两半径和三个量中已知任何两个量,都可以求第三个量;

  (2)如果两圆有两条外(或内)公切线,并且它们相交,那么交点一定在两圆的连心线上;

  (3)求两圆两外(或内)公切线的夹角.

  (五)作业

  教材P153中12、13、14.

圆周角教案青岛版第 4 篇

  【内容概述】

切线的判定定理教案

  证明圆的切线是近几年中考常见的数学问题之一。最常用的是利用“经过半径的外端并且垂直于这条半径的直线是圆的切线”证明。

  本内容通过动手操作得出切线的判定定理,再利用解决两道例题,总结归纳出两种具体的证法:

  ①当直线与圆有一个公共点时,把圆心和这个公共点连结起来,证明直线垂直于这条半径,简称为“连半径,证垂直”;

  ②当直线和圆的公共点没有明确时,可过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称为“作垂直,证半径”。

  归纳总结后,马上给予两道对应练习题巩固理解两种证明方法。

  【教学重难点】

  理解切线的判定方法,能选择正确的方法证明一条直线是圆的切线。

  【教学目标】

  掌握判断圆的切线的方法,并灵活解题。进一步培养使用“分类”与“归纳”等思想方法的能力。

  【教学过程】

  一、复习引入

  平面内直线和圆存在着三种位置关系,即直线和圆相离、直线和圆相切、直线和圆相交,这三种位置关系中最重要的是直线和圆相切。那么怎样证明直线和圆相切呢?怎样判定一条直线是圆的切线?

  ⑴和圆只有一个公共点的直线是圆的切线;(定义)

  ⑵到圆心的距离等于半径的直线是圆的切线;(d=r)

  除了这两种方法,还有没有其他方法判定一条直线是圆的切线呢?

  活动一:在练习本上画一个圆O,做一个半径OA,做一条直线L,使L经过点A且垂直于OA。这样的直线能画几条?这条直线和圆是什么位置关系?为什么?你得到了什么结论?

  切线判定定理:经过直径的一端,且垂直于这条直径的直线是圆的切线。

  活动二:分析定理。经过直径的一端,且垂直于这条直径的直线是圆的切线。

  这个定理有什么用?证明一条直线是圆的切线,那根据这个判定定理,要证明一条直线是圆的切线,需要几个条件?分别是什么?

  对定理的理解:①经过半径外端. ②垂直于这条半径。

  定理中的两个条件缺一不可。

  二、典型例题

  例1:如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,

  求证:直线AB是⊙O的切线。

  证明:连结0C

  ∵0A=0B,CA=CB,

  ∴AB⊥OC。

  ∵直线AB经过半径0C的外端C,

  并且垂直于半径0C,

  ∴AB是⊙O的切线。

  【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的`外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线。

  例2:如图,P是∠BAC上的平分线上一点,PD⊥AC,垂足为D,请问AB与以P

  为圆心、PD为半径的圆相切吗?为什么 ?

  证明:过P作PE⊥AB于E

  ∵AP平分∠BAC,PD⊥AC

  ∴PE=PD(角平分线上的点到角两边距离相等)

  ∴圆心P到AB的距离PE=PD=半径

  ∴AB与圆相切

  【设计意图】通过例一和例二的解答,总结证明切线的两种添加辅助线的方法。

  ①当直线与圆有一个公共点时,把圆心和这个公共点连结起来,证明直线垂直于这条半径,简称为“连半径,证垂直”;

  ②当直线和圆的公共点没有明确时,可过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称为“作垂直,证半径”。

  三、知识应用(练习)

  1、如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上

  的一点,AE⊥DC交DC的延长线于点E,弦AC平分∠EAB。

  求证:DE是⊙O的切线.

  [分析]:因直线DE与⊙O有公共点C,故应采用“连半径,证垂直”的方法。

  证明:连接OC,则OA=OC,

  ∴∠CAO=∠ACO(等边对等角)

  ∵AC平分∠EAB(已知)

  ∴∠EAC=∠CAO(角平分线的定义)

  ∴∠EAC=∠ACO(等量代换)

  ∴AE∥CO,(内错角相等,两直线平行)

  又AE⊥DE,

  ∴CO⊥DC,

  ∴DE是⊙O的切线.

  【评析】本题综合运用了圆的切线的性质与判定定理.一定要注意区分这两个定理的题设与结论,注意在什么情况下可以用切线的性质定理,在什么情况下可以用切线的判定定理.希望同学们通过本题对这两个定理有进一步的认识.本题若作OC⊥CD,就判断出了CD与⊙O相切,这是错误的.这样做相当于还未探究、判断,就以经得出了结论,显然是错误的。

  2、如图,已知在△ABC中,CD是AB上的高,且CD=AB,E、F分别是AC、

  BC的中点,求证:以EF为直径的⊙O 与AB 相切。

  [分析]:因直线AB与⊙O无确定的公共点,故应采用“作垂直,证半径”方法。

  证明:过O点作OH⊥AB于H

  ∵E、F分别为AC、BC的中点(已知)

  ∴EF∥AB,且EF=AB(三角形中位线平行于第三边,且等于第三边的一半)

  ∴G点为CD的中点,OH=GD=CD

  ∵CD=AB ∴EF=CD

  ∴OH=EF

  ∴AB为⊙O的切线

  四、小结升华

  本节课里,你学到了哪些知识,它们是如何应用的?

  证明切线的方法:(1)直线和圆有交点时,“连半径,证垂直”;

  (2)直线和圆无确定交点时,“作垂直,证半径”。

  【设计意图】让学生自己通过这节课的学习归纳总结出本知识点,即判断直线与

  圆相切的方法以及二种添加辅助线的方法。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号