当前位置:首页 > 教案教学设计 > 数学教案

坐标表示平移

日期:2022-01-20

这是坐标表示平移,是优秀的数学教案文章,供老师家长们参考学习。

坐标表示平移

坐标表示平移第 1 篇

  一. 学习目标

  1.掌握常用函数的解析式形式;

  2.掌握待定系数法求解析式的一般步骤;

  二.知识点

  1. 待定系数法定义

  一般地,在求一个函数时,如果知道这个函数的一般形式, 可先把所求函数写为一般形式,其中系数待定,然后再根据题设条件求出这些待定系数. 这种通过求待定系数来确定变量之间关系式的方法叫做_________.

  2. 利用待定系数法解决问题的.步骤:

  ○1确定所求问题含有待定系数解析式.

  ○2根据_______, 列出一组含有待定系数的方程.

  ○3解方程组或者消去待定系数,从而使问题得到解决.

  3. 用待定系数法求二次函数的解析式

  二次函数的解析式有三种形式:

  ○1 一般式: (a、b、c为常数,且 ).

  ○2 顶点式: (a、b、c为常数, ).

  ○3 交点式: (a、 、 为常数, ).

  要确定二次函数的解析式,就是要确定解析式中的_______, 由于每一种形式中都含有___________,所以用待定系数法求二次函数解析式时,要具备三个独立条件.

  三.例题

  例1. 已知一个正比例函数的图象经过点(-3,4),求这个函数的解析表达式 .

  变式:○1 已知一次函数图象经过点(-4,15),且与正比例函数图象交于点(6,-5),求此一次函数和正比例函数的解析式.

  ○2 若 是一次函数, ,求其解析式

  例2.根据下列条件,求二次函数 的解析式.

  ○1图象过点(2,0)、(4,0)及点(0,3);

  ○2图象顶点为(1,2),并且图象过点(0,4);

  ○3图象过点(1,1)、(0,2)、(3,5).

  四.限时训练

  1. 已知一次函数 是增函数, 则它的图象经过( )

  A. 第一、二、三象限 B. 第一、二、四象限

  C. 第二、三、四象限 D. 第一、三、四象限

  2. 抛物线 ( ) 和 在同一坐标系中如下图,正确的示意图是( )

  3. 已知二次函数 的图象顶点为(2,-1),与 轴交点坐标为(0,11),则( )

  A. a=1, b=-4, c=-11 B. a=3, b=12, c=11

  C. a=3, b=-6, c=11 D. a=3, b=-12, c=11

  4. 已知 与 成正比例, 且当 时, . 则 与 的函数关系式______________.

  5. 已知一次函数 有 , 则 的解析式__________.

  6. 若函数 , 的图象关于直线 对称,则 为__________.

  7. 已知抛物线经过点(1,3),顶点是(2,2),则其解析式为___________.

  8. 抛物线与 轴交于A ,B , 并且在 轴上的截距为4,则其方程为_______________.

  9. 二次函数满足 , 且在 轴上的一个截距为-1,在 轴上的截距为3,则其方程为_______________.

  10. 在函数 中,若 ,且 ,则该函数有最______值(填“大”或“小”),且该值为___________.

  11. 已知 是一次函数,且满足 , 求 .

  12. 已知二次函数 对任意实数 满足关系式 ,且 有最小值 .又知函数 的图象与 轴有两个交点,它们之间的距离为 ,求函数 的解析式.

坐标表示平移第 2 篇

教学目标:

1、知识与技能目标:认识平面直角坐标系,了解点与坐标的对应关系;

2、过程与方法目标:通过研究平面直角坐标中数与点的对应关系,能根据坐标描出点的位置;

3、情感态度与价值观目标:感受代数与几何问题的相互转换。体会品面直角坐标系在解决实际问题的作用,培养数学学习兴趣。

教学重难点:

重点:理解平面直角坐标中点与数的一一对应关系;

难点:根据坐标描出点的位置,以及坐标轴上的点的坐标特点。

教学用具:

教师准备四张大的纸质坐标格子。

教学过程:

一、温故知新,导入新课。

游戏导入:上一节课我们学习了有序数对,大家学习积极性很高,今天老师先考考你们, 看你们掌握了多少。

我们将教室里的座位分为八列七排。a排b号记做有序数对(a,b),同学们先找准自己的数对号。听老师报数对,若是你自己的数对号,就快速站起来。反应太慢和站错了都算失败,扣一分;反之加一分。最后以组为单位,比比哪组得分最高。

我们可以发现,通过教室平面内的有序数对,可以唯一的确定与之对应的同学。

二、新课教学

课本例子:我们知道数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。例如点A数轴上的坐标是-4,点B数轴上的坐标是2;我们说坐标是3.5的点,也可以在数轴上唯一确定。

教师提问1:类似于数轴确定直线上点的位置,能不能找到一种方法来确定平面内点的位置呢?平面内给出任意点A、B、C、D,我们怎么确定这些点的位置

学生活动:小a说可以像教室座位一样给任意点编一个横排纵排的号,小

B说我们可以每个点列一个数轴···

教师活动:引导学生思考,怎么才能用同一标准,方便的确定每一点的位置?

结合横纵排编号以及数轴,我们可以综合考虑,引出一个横纵的数轴?

得出结论:我们可以在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。

那有了这样的平面直角坐标系,平面内的点就可以用之前学的有序数对来表示了。例如:由A分别向x轴和y轴作垂线。垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说A的坐标是3,纵坐标是4,有序数对(3,4)就叫做A的坐标,记作A(3,4)

教师提问2:同学们按照这种做法,在坐标纸上标出B、C、D的坐标。

教师活动:走下讲台,关注学生的汇坐标过程方法,指出学生出现问题的地方,并予以改正。

教师提问3:在横纵坐标轴上各标一点E、F,问:坐标原点以及这两点的坐标是什么?

教师活动:引导学生思考归纳坐标轴上的点的坐标的特点。

得出结论:原点的坐标是(0,0),x轴上的点的坐标的纵坐标为0;y轴上的点的坐标的横坐标为0。

三、课程巩固

师生互动:与学生一起回忆平面直角坐标系的各部分的意义,平面内的点怎么对应坐标,以及坐标轴上的点的坐标特点。

“练一练”:

在黑板上贴出四张事先准备好的纸质坐标格子,在上面标出任意的ABCDEFG等点,每组我点一个按坐标序列对,对应的同学上黑板,来描出各点的坐标。对一个加一分,错一个扣一分,得分相同的看用时,时间短者胜,过程中下面的学生不能提示,提示一次扣2分。比赛看哪组学生代表得分最多。

(1,2)、(3,4)、(5,6)、(7,8)四位同学上黑板来描点。

教师活动:规范课堂气氛,公平的评判,对于表现好的小组代表予以表扬,表现稍逊的学生不要气馁,给予鼓励,争取下一次可以获胜。

四、小结作业:

思考平面直角坐标系中坐标与点的对应关系,如何由坐标值确定点的位置。下节课我们会探讨这个问题。

板书设计:

平面直角坐标系

平面直角坐标系:平面内画两条相互垂直、原点重合的数轴组成

水平的数轴称为x轴或横轴,习惯上取向右为正方向;

竖直的数轴称为y轴或纵轴,取向上为正方向;

两坐标轴的交点为平面直角坐标系的原点。

坐标表示平移第 3 篇

  现在我们的数学已经越来越接近我们的日常生活, 来源于我们的生活,这些生活中的学习素材是学生在生活中可以接触到的,也是对他们的生活有意思的.所以学习起来很能激发他们的兴趣与热情,这就是一直在提倡的将抽象的数学知识寓于现实的,有意义的学习活动中,是在数学与生活中架起一座桥梁.现对本节课反思如下:

  1、 精心设计问题

  问题是思维的核心,只有提出了一种有一定深度的问题,才能引发学生的积极思维,才能培养学生的数学能力。学生在积极探索的过程中,不仅学带的基础知识得到了应用,解决问题的能力也得到了培养,更主要的是学会自主学习,积极探究、创新的精神也得到充分的培养,从而形成了一种能力。

  一方面,在问题的关键处要让学生想到,另一方面,要能提出尖锐的问题让学生大胆地想象,特别是整节课看下来,教学设计过程明确,教态从容不迫,很亲切自然,让孩子能够很顺利的融入到良好的课堂的学习气氛之中.在引入阶段时引用了学生熟悉的平移,接着再引出本课要学习的《用坐标表示平移》,过渡的很自然,有层次.通过小组之间的讨论和交流,学生能够比较清楚的阐述了平面直角坐标中图形平移与坐标变化之间的特点,说出用坐标表示平移变化之间关系等知识点.同时也注重培养学生的观察能力和语言表达的能力,让他们能够通过自己的观察表达出数量的变化规律.

  2、 营造“对话”的环境

  主动营造师生对话的环境。教师不仅要担当知识的传授者,还要在不同的场合担当辅导者、咨询者、合作者、朋友等复杂角色。教师应当创造机会接近学生、了解学生,与学生展开平等的对话和交流,学生才愿意在课堂上主动参与教学活动,把握学习的自主权,从而提高学习的能力和效率。教师切忌“一言堂”、“满堂灌”要善于营造宽松有趣,生动活泼的思考气氛,努力为学生创设活动的机会,最大限度地调动学生参与的积极性,发挥学生的主体作用。

  我想在今后的实践中我要更多地改进方法,最终找到一种真正适合的最有效的方法,让学生学得更轻松,老师也教得很快乐!调动学生的积极性

坐标表示平移第 4 篇

教材分析

课程标准的描述

要求学生明确确定一次函数需要两个条件,确定正比例函数需要一个条件;会用待定系数法求一次函数的解析式,并使学生初步形成数形结合的思想;

教学内容分析

通过例4,介绍了用待定系数法求一次函数的解析式的基本步骤,并明确待定系数法的用途和目的,进而形成数形结合的思想;

前面学生一直学习的是已知函数的解析式,然后研究函数的图象和性质,是从数到形的过程;从这一节课开始,学生反过来学习从形到数,并且在后面的学习中也经常用到数形结合的思想,所以这节课是整个学生的一种逆向思维的转折点,起着承上启下的作用,具有重要意义。

学情分析

教学对象分析

?1.本班学生对于一次函数的图像和性质掌握的比较好,能通过解析式画出函数图象,通过图象判断k和b的符号,会用待定系数法计算简单的正比例函数的解析式,但求解二元一次方程组还有一定的困难,而利用待定系数法求一次函数的解析式,由于两个式子相减,b就可以抵消,所以计算问题不会很大。另外,学生在练习的过程中,对新题型比较陌生,特别是没有直接给出点或者没有说求函数解析式,这样的题学生掌握的不够好。

2.学生已经学过解二元一次方程组,并会求正比例函数的解析式,初步认识过待定系数法,以前也接触过数形结合的思想。在此基础上,可以先让学生知道什么是待定系数法,怎样去用,具体步骤有哪些,进而体会数形结合的思想,然后举例说明从数到形和从形到数的相互渗透。

3.如何根据所给的信息找到条件,确定一次函数的解析式,是学生学习的障碍,对于这个问题,主要利用四种题型(图象、列表、交点、实际应用)和学生一起探寻条件(主要是找两个点),从而突破这个障碍。

教学目标

教学目标

 1、理解待定系数法,并会用待定系数法求一次函数的解析式;?

 2、能结合一次函数的图象和性质,灵活运用待定系数法求一次函数解析式;?

 3、能根据函数图象确定一次函数的表达式,并由此进一步体会数形结合的思想;?

 4、通过引入待定系数法的过程,向学生渗透转化的思想,培养学生分析问题,解决问题的能力.

教学重点和难点

项 目

内 容

解 决 措 施

教学重点

利用待定系数法求一次函数的解析式

强调用待定系数法求一次函数解析式的步骤

教学难点

培养数形结合分析问题和解决问题的能力

指导学生从题目中找出两个条件

教学策略

教学策略的简要阐述

通过讲授不同题型,从浅入深掌握待定系数法求一次函数解析式的四个步骤。

教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果。因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。先“引导发现”,后“讲评点拨”,再加上多媒体的运用,使学生真正成为学习的主体。

教学过程

课堂教学过程设计

教学环节

教师活动

学生活动

设计意图、依据

复习

出了一组关于一次函数解析式、图象及性质的填空题。

一、温故知新:

1、在函数y=2x中,函数y随自变量x的增大__________。

2、已知一次函数y=2x+4的图像经过点(m,8),则m=________。

3、一次函数y=-2x+1的图象经过第 象限,y随着x的增大而 ; y=2x -1图象经过第  象限,y随着x的增大而

   。

4、若一次函数y=x+b的图象过点A(1,-1),则b=________

5、已知一次函数y=kx+5过点P(-1,2),则k=_____

大部分同学很快就完成,一小组同学轮流说答案并简单讲解。

复习一次函数的图象和性质,并初步体会从数到形的思想

创设情景,提出问题

让学生画出y=2x和y=x+3的图象,并思考“你在作这两个函数图象时,分别描了几个点?你能否通过取直线上的这两个点来求这条直线的解析式呢?”

接着让学生完成:

已知:一次函数y=kx+b当x=1时y的值为2,当x=2时y的值为5,求k和b.

解:把x=1,y=2;x=2,y=5分别代入函数y=kx+b得:

解得:

学生通过画图象确定“两点确定一条直线”,即求一次函数解析式需要两个条件,求出k和b即可。

激发学生学习的兴趣,培养学生分析问题的能力。通过填空题的形式,初步体会列二元一次方程组求k和b的值。

讲授例题

以教材例4为主,讲授待定系数法的四个步骤,如何利用待定系数法求函数的解析式,如何找到两个点,并总结归纳什么是待定系数法。

例:已知一次函数的图象经过点(3,5)与(-4,-9). 求这个一次函数的解析式.

待定系数法:______________________________________________________________

你能归纳出待定系数法求函数解析式的基本步骤吗?

(1)_______________(2)_______________(3)_______________(4)____________

学生能根据给的两个点的坐标代到一次函数的解析式,并且解出二元一次方程组,求出k和b,知道求一次函数的解析式,只需要求出k和b,也就是需要找两个条件,实质上就是找两个点。

通过例题使学生形成完整的利用待定系数法求函数解析式的步骤。

提出问题,形成思路

出示四种题型:图象、表格、两点的坐标、实际应用,分别用待定系数法求一次函数的解析式。

图象的学生基本能求出,会找两个点;对于利用表格信息确定函数解析式,学生不知道是求函数的解析式;实际应用问题,学生分析问题能力较差,但基本上能找到两个条件。

加深对待定系数法的理解,加强分析问题并解决问题的能力。

课堂小结

1、待定系数法求一次函数的解析式的步骤;

2、数形结合的思想:从数到形和从形到数的思路。

学生基本能说出这节课学习的主要内容,对于数形结合的思想,学生基本能理解。

复习巩固所学知识,体会数形结合的思想。

小试身手

设计了一组从浅入深的题目,巩固本节课的内容。

由于时间关系,只完成了3题。

深化巩固所学知识,并能有所拓展提高。

板书设计

用待定系数法求一次函数的解析式

例、解:设这个一次函数的解析式为:y=kx+b

∵y=kx+b的图象过点(3,5)与(-4,-9).

3k+b=5

-4k+b=-9

解方程组得

K=2

b=-1

这个一次函数的解析式为:y=2x-1

用待定系数法求函数解析式的步骤:

1、设

2、代

3、解

4、写

教学

特色

教学特色

及时肯定学生和营造鼓励学生的氛围,激发学生学习的兴趣,积极参与课堂,自觉学习和思考。

利用多媒体辅助教学,增强直观性,提高学习效率和质量,增大教学容量,激发学生兴趣,调动积极性。

问题式教学, 互动式教学引导学生学会探究、学会合作、学会学习、学会体验。

设置了学案,让学生对教学内容更容易掌握。

教学

反思

在导入新课时,通过一组练习,让学生清楚一次函数解析式或图象关键是k和b的确定。通过几种题型的练习,让学生思考和回答问题,令学生的数学语言概括能力,互助学习、合作学习的能力得到提高,因为之前学习了函数的图象和性质,学生的数形结合思想渗透也较好?。反而,在教学过程中,特别是学生解二元一次方程组,本来说很简单的,但很多学生计算都出现了问题,所以在后面的教学中,要加强学生的计算能力。教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果.因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程。先“引导发现”,后“讲评点拨”,再加上多媒体的运用,使学生真正成为学习的主体。?在课堂总结环节应逐步培养学生学会总结的意识和习惯。

但有些细节还没把握好,譬如小组交流探讨时间较短等等,希望以后的课堂能更好的培养学生的合作交流能力。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号