当前位置:首页 > 教案教学设计 > 数学教案

复数的四则运算教学重点

日期:2022-01-21

这是复数的四则运算教学重点,是优秀的数学教案文章,供老师家长们参考学习。

复数的四则运算教学重点

复数的四则运算教学重点第 1 篇

教学目标

1.归纳整理四则运算的意义.

2.归纳整理整数小数和分数计算法则的异同点,进一步总结计算时应遵循的一般规律.

3.总结四则运算中的一些特殊情况.

4.总结验算方法.

教学重点

整理四则运算的意义及法则.

教学难点

对四则运算算理本质规律的认识和理解.

教学步骤

一、复习旧知识,归纳知识结构.

(一)四则运算的意义.【演示课件“四则运算的意义和法则”】

1.举例说明四则运算的意义.

根据下面算式,说一说它们表示的四则运算的意义.

2+30.6-0.42×36÷2

100-152×0.30.6÷0.2

0.2+0.32×1.3

2.观察图片.

教师提问:看一看,整数、小数、分数的哪些意义相同?哪些意义有扩展?

(加法、减法和除法意义相同,乘法意义在小数和分数中有所扩展.)

3.你能用图示的形式表示出四则运算的意义之间的关系吗?

(二)四则运算的法则.【继续演示课件“四则运算的意义和法则”】

1.加法和减法的法则.

(1)出示三道题,请分析错误原因并改正.

错误分别是:数位没有对齐,小数点没有对齐,没有通分.

(2)三条法则分别是怎样要求的?

整数:相同数位对齐

小数:小数点对齐

分数:分母相同时才能直接相加减

思考:三条法则的要求反映了一条什么样的共同的规律?

(相同计数单位上的数才能相加或相减)

2.乘法和除法的法则.

(1)出示两道题:

口述整数乘法和除法的计算法则.

改编成小数乘除法计算:1.42×2.34.182÷1.23

(要求:学生在整数计算的结果上确定小数点的位置)

(2)教师提问.

通过上面的计算,你发现小数乘法和除法与整数乘法和除法有什么相似的地方?

(小数乘除法都先按整数乘除法法则计算)

有什么不同?

(小数乘、除法还要在计算结果上确定小数点的位置.)

(3)根据,说一说分数乘法和除法的法则.

分数乘法和除法比较又有什么相似和不同?

相似:分数除法要转化成分数乘法计算.

不同:分数除法转化后乘的是除数的倒数.

(三)练习.【继续演示课件“四则运算的意义和法则”】

计算后说一说各题计算时需要注意什么?

73.06-3.96(差的百分位是0,可以不写)

37.5×1.03(积是三位小数)

8.7÷0.03(商是整数)

3.13÷15(得数保留三位小数)

(要除到小数点后第四位)

(要先通分)

(四)法则中的特殊情况.【继续演示课件“四则运算的意义和法则”】

请同学们根据a与0,a与1和a与a的运算分类.(a作除数时不等于0)

分类如下:

第一组:a+0=aa-0=aa×0=00÷a=0

第二组:a×1=aa÷1=a

第三组:a-a=0a÷a=1

(五)验算.【继续演示课件“四则运算的意义和法则”】

1.根据四则运算的关系,完成下面等式.

2.思考:怎样应用这些关系对加、减法或乘、除法的计算进行验算?

(加法可用减法验算;减法可以用加法或减法验算;乘法可以用除法验算;除法可以用乘法或除法验算.)

3.练习:先说出下面各算式的意义,再计算,并进行验算.

4325+37947.5-7.6518.4×75

84×587.1÷0.57÷

二、全课小结.

这节课我们对四则运算的意义和法则进行了整理和复习,总结了在四则运算中的一些特殊情况及注意的问题,希望同学们在计算时一定要细心、认真,养成自觉验算的好习惯.

三、随堂练习.

1.根据43×78=3354,直接写出下面各题的得数.(复习积的变化规律和商不变的性质)

43×0.78=0.43×7.8=

33.54÷0.78=3354÷0.43=

2.在○里填上“>”“<”或“=”.

○12×○12÷3×2

÷○12÷○12÷2×3

3.思考:7.6÷0.25的商与7.6×4的积相等吗?为什么?

四、布置作业.

计算下面各题,并且验算.

1624÷56-

×4.5×5.02

五、板书设计

复数的四则运算教学重点第 2 篇

教师在学生学习的过程中,应注重对学生的引导,而教师的导,学生的学,都必须遵循学生的认识规律,引导学生积极、主动地获职知识。而四则混合运算的教学主要是梳理四则混合运算的运算顺序,并在整理混合运算的运算顺序时,解决实际问题,使学生在解决实际问题的过程中,进一步掌握分析问题、解决问题的策略与方法,同时让学生体会运算顺序的必要性,从而系统地掌握混合运算的顺序。

1 从规律出发,让学生理解四则运算

从儿童的年龄特点和规律出发,以旧拓新。课的开始,我经常出示一道口算题和一道整数四则运算题,让学生在复习旧知识的基础上巧妙过渡到新知识,激发求知欲望,并善于提出问题,善于引导学生发现问题。因而在关键处提出一些问题,且内容恰当,难易适度,并富于思考性,易调动学生思维的积极性。当出示尝试题后,说:“谁能不通过老师的讲解就能做题?”引导学生自己去探索知识,做的过程中提出:“先算什么?后算什么?”由于学生对这些知识并不陌生,很快会根据先算什么,后算什么。这一系列问题,对于学生的思维,有明确的导向作用。理解四则运算,是学习四则计算的基础。根据小学生的年龄特征和认识规律,在四则运算教学中,应主要从感性认识上说明加、减、乘、除法的含义,使学生对四则运算有个初步的理解,还不能从理论上给出它们的定义。而在经过大量的四则运算的基础上,教师对四则运算的意义和四则运算之间的关系,进行抽象、概括,不仅是必要的,而且是可行的。因此要使学生进一步理解四则运算的意义,掌握加法与减法、乘法与除法之间的关系,为学生进一步学习打好基础。在四则运算的过程中,教师要尽量使学生理解和掌握加法、乘法的运算定律,能够进行一些简便运算,发展学生思维,提高学生的计算能力。

2 理解运算定律是学习简便运算的前提

许多简便运算都是充分合理地应用运算定律、性质的结果。如果学生没有理解运算定律、性质,简便运算就是无本之木、无源之水,只能是照葫芦画瓢,在题目明确要求用简便方法时才简算,题目没有明确要求用简便方法计算时,即使算式有简算条件,也不会自觉地采用简便方法计算。因此,教材在每次教学简便运算前都有计划地安排运算定律、性质的教学。一种是把运算性质安排在习题中,让学生通过解答习题,了解运算性质。如练习题中填写下表,说一说:什么数没变?什么数变化了?怎么变化的?加数280 280 280 280 280 280 ,加数10 40 70 100 130 160和被减数 250 250 250 250 250 250 250 ,减数10 40 70 100 130 160 190,学生通过填一填、比一比、说一说,知道了一个加数不变,另一个加数增加几,和也增加几;被减数不变 ,减数增加几,差反而减少几。对和、差变化规律直观的、初步的认识,为以后学习一个数加上(减去)另一个接近整十、整百数的简便算法创造了条件。另外是把运算定律、性质安排在应用题复习中,让学生在重温应用题解答的过程中感知运算定律、性质。如用两种方法解答应用题:“三年级同学参加春季植树,把90人分成2队,每队分成3组,每组有多少人?”这道题的两种解法结果相同,所以90÷2÷3=90÷(3×2),这个等式表示:“一个数连续用两个数除,每次都能除尽的时候,可以先把两个除数相乘,再用它们的积去除被除数,结果不变。”教材对这条除法性质的直观描述,成为教学390÷5÷6、420÷35的简便算法的基础。还有一种是为运算定律的教学安排例题,在学生充分感知的基础上进行抽象概括,形成对运算定律的理性认识。简便运算是在特殊条件下应用运算定律、性质的快速计算。运算定律、性质本身是具有普遍意义的规律。如只要是三个数连乘都可以先把前两个数相乘,再与第三个数相乘,也可以先把后面两个数相乘,再与第一个数相乘;只要是连减,都可以先把各个减数相加,再从被减数中减去各个减数的和。但在应用运算定律、性质简便计算时,需要根据算式所具备的特殊条件灵活运用。思维的灵活性是简便运算的灵魂。简便运算在一定程度上突破了算式原来的运算顺序,根据运算定律、性质重组运算顺序。因此,培养学生思维的灵活性就显得尤为重要。首先,要培养学生敏锐的观察力。在教学中加强有针对性的口算练习。第二,要使学生正向思维和逆向思维同步发展,能正向也能逆向应用运算定律。如39×25×4=39 ×100=3900是正向应用乘法结合律,25×24=25×4×6=600是逆向应用乘法结合律; 9×37+9×63=9×100=900是逆向应用乘法分配律。在应用的同时让学生正向、逆向表述运算定律、性质。如表述减法性质:“一个数连续减去几个数,可以从这个数里减去各个减数的和”,“一个数减去几个数的和,可以从这个数里连续减去各个加数。”第三,要使学生收敛思维和发散思维同步发展。有些简算虽然方法相同,但可以用不同的原理来解释,如637+102=637+100+2=737+2=739,可以看作是应用和的变化规律,也可以看作应用加法结合律。在教学中不宜把简算方法教得过死,也不要把一道题可能用的简算方法教得很全,要鼓励学生动脑筋,自己寻找简算方法。

3 分清运算顺序

在混合运算初步教学阶段,教学由百以内加减法组成的两步式题、由表内乘除法组成的两步式题、很简单的乘加(减)与有小括号的两步式题。在这一环节中,四则混合运算教学有三个特点:一是,以 口算为主;二是,解题时只要求写出两步式题的结果;三是,辅助相关知识的教学,如乘加(减)两步式题能帮助学生了解相邻两句乘法口诀之间的联系。四则混合运算教学的第二个环节是各种运算顺序的教学,它有两个特点:一是,用四句话概括表述了常用的混合运算顺序,“在没有括号的算式里,如果只有加减法或者只有乘除法,都要从左往右按顺序运算”,“在没有括号的算式里,有乘法和加、减法,都要先算乘法”,“在没有括号的算式里,有除法和加、减法 ,都要先算除法”,“算式里有括号,要先算括号里面的”。教材中暂时把“先乘除、后加减”分成两句话表述,适当降低了教学要求;第二个特点是,解题时要写出每步计算的结果,以表明运算顺序。四则混合运算教学的第三个环节是在学生初步掌握混合运算顺序的基础上,教学三步计算的式题。它也有两个特点:一是,由易到难,先教学比较容易的三步式题,如16×4+6×3,74+100÷5×3;二是,式题中有乘、除数是两、三位数的乘、除法,计算比较复杂,容易出现错误 。教师要在学生掌握连加、连减、加减混合式题和连乘、连除、乘除混合式题的基础上,把同级运算扩展到不同级运算,掌握混合运算式题的运算顺序。教师要使学生明确在混合运算式题计算中,要看它是含有同级运算还是含有不同级运算,同级运算的运算顺序是从左往右,依次演算;不同级运算的,要先算乘除,后算加减。

总之,上好一堂四则混合运算课,教师要充分发挥引导作用,以旧拓新,激发兴趣,启迪思维,引导学生探讨知识,正确处理教与学的联系。

复数的四则运算教学重点第 3 篇

  第一课时:加减混合运算

  教学目标

  1、使学生掌握加减混合运算的运算顺序,并能正确地计算。

  2、在解决具体问题的过程中,知道算式中每一步所表示的意思,根据算式的意思来说明运算顺序。

  教学重点:在解决问题的过程中,掌握加减混合运算顺序。

  教学难点:根据算式的意思来说明运算顺序。

  教学过程

  (一)谈话引入 激发兴趣

  同学们,你们心目中认为什么样的景色是最美的?(鸟语花香、晴空万里、茫茫草原、雪景……)今天,老师带大家到冰城哈尔滨去看看。(课件出示)

  美吗?(美)欣赏图片

  (二)情景延伸 复习旧知

  咱们一起到“冰雪天地”去看一看吧!

  1、说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的?

  同学们观察得真仔细。我们从图上可以知道:滑冰区有72人,滑水区有36人,冰雕区有180人。同学们仔细想一想,你们能根据这些信息提出一些数学问题并解决它吗?

  2、交流、反馈

  同学们真棒!根据三条信息就可提出这么多的问题,还能够解决问题。

  (三)学习新知 算法探究

  同学们,咱们到滑冰场去看一看吧!(课件出示)下面请听滑冰场的负责人向大家介绍:小朋友们,欢迎你们来到滑冰区,今天上午有72人,中午有44人离去,又有85人到来。你们也进去看一看吧!

  同学们,你们知道现在滑冰场有多少人在滑冰吗?

  1、 列式计算,并跟同桌说一说你是怎么想的?

  2、反馈交流。

  (1)、72-44=28 (2)72-44+85=113

  28+85=113

  72-44表示什么?28+85又表示什么?

  说说哪一种方法好?为什么?(方法(2)可以少写一个中间数,因此更简便。)

  4、运用方法(2)列式。

  如果老师把题目改一改,滑冰区今天上午有78人,又进来50人,下午离开37人,现在有多少人呢?

  请学生自由列式计算,然后全班交流。

  78+50-37

  说一说每一步的意思。

  5、小结加减混合运算的运算顺序。

  学习这两题以后我们来观察这两题的计算顺序,你能用一句话来概括吗?(有加有减,按从左往右的顺序进行计算。)

  (四)巩固新知 总结评价

  “冰雪天地”参观得差不多了,我们该回到学校去了。路比较远,咱们就乘公交车吧!

  1、(课件出示)咱们在“城南站“上车,公交车上原有乘客36人,下车12人,又上车15人,现在车上有多少人?

  (1)请学生快速地列出算式。

  (2)完成后同桌说一说每一步算式的意思,运算顺序又是怎么样的?

  2、到校了,我们去图书室看会儿书,请听图书管理员阿姨为我们介绍:同学们,今天真是个好日子,借故事书的人特别多,图书室有故事书98本,今天借出了46本,返回25本,你知道现在图书室里有多少本故事书吗?

  3、小结:学习了这节课你有什么收获?你觉得自己哪里还掌握得不够好?

  第二课时:乘除混合运算

  教学目标:

  1、通过解决具体的问题,列出算式,分析算式的意思,使学生明确乘除混合运算的顺序。

  2、遇到乘除混合运算式题学生能按从左往右的顺序进行计算。

  教学重点:掌握乘除混合运算的运算顺序。

  教学难点:要让学生来理解题目的数量关系,能够看算式中每一步的意思。

  教学过程

  (一)复习旧知

  昨天咱们学习了加减混合运算,谁能说一说加减混合运算的运算顺序。

  1、回忆加减混合运算的运算顺序。(在只有加减法的算式里,按从左往右的顺序进行计算。)

  咱们来看两题,结合具体的题目咱们再来分析一下运算顺序。

  2、说说运算顺序并计算。

  25+78-91 105-58+46

  (二)展开新课

  看来同学们掌握得不错。大家用掌声表示对自己的鼓励。今天咱们再到“冰雪天地“去看一看,那里会不会有什么新情况。

  1、出示例2。

  “冰雪天地“3天接待了987人,照这样计算,6天预计接待多少人?

  2、请一位学生读题。

  3、照这样计算是什么意思?(意思是每天接待的人数,按3天接待987人计算。

  4、请同学们小组讨论解题方法,可以借助线段图来理解,列出算式,想一想每一步算式表示什么意思?

  5、组织交流:

  A、 分步列式:987÷3=329

  329×6=1974

  综合列式:987÷3×6

  =329×6

  =1974

  线段图: 3天接待987人

  一共接待几人?

  引导学生把自己的线段图画在黑板上,特别是评价表示6天接待人数的线段的长短。

  987÷3表示一天接待多少人。

  329×6表示一天接待的人数乘天数6就能算出6天接待的人数。

  比较分步列式与综合列式哪个更简便?(综合列式比较简便,他可以少写一个中间数。)

  B、6÷3×987

  6÷3表示6天里含有两个3,即2个987人。

  6、小结乘除混合运算的运算顺序。(在只有乘除法的计算式题里,按从左往右的顺序进行计算。)

  7、总结出没有括号的算式里只有加减法或只有乘除法的运算顺序。(在没有括号的算式里,只有加减法法或只有乘除法,按从左往右的顺序进行计算。)

  (三)巩固深化

  1、口算。

  27÷3×7

   3×6÷9

  

   25÷5×8

  45+8-23

    63÷7×8

  

   24-8+10

  28÷4×7

   35+24-12

  

  48÷8÷9

  开小火车的方式进行,每说一个,其他同学判断是对还是错,前面的同学说错了,后面的同学进行更正。要求越快越好,如果前面的同学慢了,后面同学可以快速进行抢答。

  2、一箱橙汁48元,芳芳要买三瓶,共需付多少元?

  请学生按照第二题的方法进行解答。可能有的同学会问这道题做不来的,缺少条件,引导学生看图找条件。

  (四)小结提高

  通过这节课的学习,你觉得自己哪方面进步了?

  第三课时:积商之和(差)的混合运算

  教学目标

  1、让学生掌握含有两级运算(没有括号)的运算顺序,并能正确地计算。

  2、让学生从实际问题的解决过程中感受“先乘除后加减”的道理。

  教学重点、难点:使学生理解运算顺序。

  教学过程:

  (一)复习导入

  前两节课,老师向大家介绍了有关“冰雪天地”游乐场的一些情况。今天,老师带来了“冰雪天地”游乐场接待人数的统计表。大家来看看这张统计表,你能提出哪些数学问题呢?

  出示下表:

  这是“冰雪天地”游乐场接待人数的统计表

  日期 星期一 星期二 星期三

  人数 312 306 369

  提问:根据表中提供的数据,你能提出哪些数学问题?(学生可能会提一些一步计算的题,教师可提示他们提出一些两步计算的题)

  根据学生回答,出示:

  3天一共接待987人,照这样计算,一周预计接待多少人?

  学生列式解答。并说说计算顺序。

  导入新课:星期天,爸爸妈妈带玲玲去“冰雪天地”游玩。大家说说到了“冰雪天地”游乐场门口,得先干什么呀?(买票)大家看,游乐场到了,牌子上都写得清清楚楚,你能看懂它的意思,会买票吗?

  课件出示情境图,引导学生看图。提问:从图中你看到了什么?

  (二)探究新知

  1、教学例3

  (1)学生分组讨论,在组内交流获取的信息,小组汇报。

  谁能用语言完整地叙述问题?

  师引导,学生回答,教师课件出示:星期天,爸爸妈妈带玲玲去“冰雪天地”游玩。成人票每张24元,儿童票半价。购门票需要花多少钱?

  提问:成人票每张多少元?半价是什么意思?儿童票每张多少元?要买几张成人票?几张儿童票?要解决什么问题?

  提问:要求购门票一共需要花多少钱,必须先求什么,再求什么,最后求什么?

  (2)列式解答。

  生1:24+24=48(元)24÷2=12(元)48+12=60(元)

  生2:24+24+24÷2

  生3:24×2+24÷2

  师板书,提问:这三个算式,它们之间有什么联系?(第一个算式是分步列式,二、三两个算式是分步列式,后两个算式的意思其实一样,24+24和24×2都是在算两张大人票要多少钱?)

  24×2表示什么意思?24÷2表示什么意思?

  让学生独立解答。

  (3)明确综合算式的解答方法。

  24+24+24÷2 24×2+24÷2

  =24+24+12 =48+12

  =48+12 =60(元)

  =60(元)

  以上两种综合算式的解答方法进行呈现,虽然两种算式都是来求购门票需要多少钱?但写法却有所不同。

  (4)引导学生进行比较。

  复习题的算式与例3的算式有什么不同?

  揭示课题:这就是我们今天这节课要学习的内容。(板书课题:积商之和(差)的混合运算)

  提问:在没有括号的算式里,有乘、除法和加、减法,要先算什么?

  生回答,师小结:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。

  2、提问:你还能提出其他问题吗?小组讨论并交流。

  学生可能提出:

  (1)买1张成人票,3张儿童票,一共要付多少钱?

  (2)买3张成人票,付100元,应找回多少钱?

  学生独立列综合算式解答,并说出计算顺序。

  3、比较:这些算式与例题算式有什么异同?

  学生回答,教师归纳并小结,深化运算顺序。

  4、反馈练习:第7页“做一做”第1题。

  运算顺序一样的画“√”,不一样的画“×”。

  (1)2×9÷3 (2)36-6×5 (3)56÷7×5

  2+9-3 36÷6×5 56+7×5

  (三)巩固提高

  1、说出下面各题的运算顺序,再计算。

  203-134÷2  28+120×8

  97-12×6+43  26×4-125÷5

  先说一说各题的运算顺序,请四位同学到黑板上来板演,其它同学在自己草稿纸上完成。完成后进行校对,有错误的及时指出。

  2、解决问题。

  (1)同学们植树,四年级140人,每人植树2棵;五年级120人,每人植树3棵。这两个年级一共植树多少棵?

  (2)果园里有苹果树48棵,桃树的棵数是苹果树的2倍,梨树的棵数比苹果树和桃树的总数多12棵。果园里有梨树多少棵?

  3、课堂小结:自己评一评这节课有哪些收获?请你的同桌评一评你这节课学得棒不棒?

  第四课时:两个商(积)之和(差)的混合运算

  教学目标:

  1、通过解决实际问题,来总结含有小括号的混合运算的运算顺序。

  2、让学生分析问题中的数量关系,提高学生分析问题、解决问题的能力。

  教学重点:根据分析数量关系来总结出含有小括号的混合运算顺序。

  教学难点:解决问题。

  教学过程:

  (一)复习铺垫

  1、你了解了混合运算的哪些知识?(根据学生回答,适当板书)

  只有加减法 从左往右

  只有乘除法 从左往右

  乘除法、加减法兼有 先乘除后加减

  2、说说运算顺序后,快速地计算出结果。

  51+16-18  67-29+15

  5×15-12÷3 56÷8-2×3

  请四位同学先说一说运算顺序,并快速地报出答案。

  (二)新知学习

  近几天来“冰雪天地“的客流量很大,游客特别多,为了使”冰雪天地“保持良好的环境,服务部决定请一些保洁员协助管理卫生。上午冰雕区有游客180位,下午有270位。如果每30位游客需要一名保洁员。

  1、你理解这三条信息的意思吗?“每30位游客需要一名保洁员”这句话你怎么理解?(游客30人就要派一名保洁员,下午与上午的标准是一样的,都30位游客派一名保洁员。)

  教师还可以问:60位游客派几名保洁员?90位游客呢?有多少游客要派5名保洁员呢?

  2、你能根据这三条信息编一道应用题吗?可自己独立完成,也可以小组合作。

  3、交流,板书。

  4、你会解答吗?先来解决第一题。

  老师请大家仔细读题后想一想,列出算式并计算,说一说每一步的意思。如果有一种解答方法了,同桌间讨论,还有别的解题方法吗?

  5、反馈。

  6、你能把以上两种算式方法写成综合算式吗?

  A、180÷30+270÷30

  B、(270+180)÷30为什么要加上括号?(因为是先算总游客数,如果不加括号,就先算除法,就变成上午要派的保洁员加下午的游客了,意思就说不通了。)

  7、总结含有小括号的混合运算的运算顺序。

  8、比较两种方法哪一种更简便?

  9、解决第二个问题。

  上午冰雕区有游客180位,下午有270位。如果每30位游客需要一名保洁员。下午要比上午多请几名保洁员?

  列出算式,并说一说运算顺序,以及每一步的意思。

  同学们真是帮了冰雕区叔叔阿姨的一个大忙,他们能根据同学们的意见尽快地来安排保洁员了。下面,我们再来解决一些问题。

  (三)巩固练习

  1、妈妈用一百元钱先给玲玲买了一件冬衣,又买了一副手套,还剩多少钱?

  2、王老师要批改48篇作文,已经批改了12篇。如果每小时批改9篇,还要必小时才能批改完?

  3、水果店运来苹果、香蕉各8箱,苹果每箱25千克,香蕉每箱18千克。一共运来水果多少千克?

  (四)总结全课

  (1)通过这节课的学习,你有什么收获?

  (2)你能用简短的几句话来概括今天学习的知识吗?(含有括号的算式的运算顺序:先算括号里的。)

  第五课时:含有小括号的三步计算式题

  教学目标:

  1、引导学生结合具体四则混合运算式题,总结四则混合运算的顺序。

  2、通过探讨为什么参与运算的数、排列顺序及运算符号都相同,而计算结果却不一样,使学生再一次认识小括号的作用,进一步掌握混合运算的顺序。

  教学重点:总结四则混合运算的运算顺序。

  教学难点:培养学生的计算意识。

  教学过程:

  (一)单刀直入 教学新知

  前几天,咱们都到“冰雪天地”去寻找数学问题,今天咱们就不去了,请看老师这儿有两题,你会计算吗?

  1、出示:

  (1)42+6×(12-4) (2)42+6×12-4

  2、比较这两题的异同点。(数字、运算符号都一样,第一题有小括号,第二题没有小括号。)

  3、你能用和、差、积、商来表述运算过程吗?(第一题:先求差,然后求积,最后求和。第二题:先求积、然后求和,最后求差。

  4、会解答吗?请两位同学到黑板上板演,其余同学做在草稿纸上。

  4、反馈交流,指出不足。

  42+6×(12-4)

  =42+6-8

  =42+48

  =90

  以采访的形式向板演的同学发问:在计算之前,你先干什么?(先确定运算顺序)你是根据什么来确定运算顺序的?(先算小括号里面的,然后再乘除,最后加减)

  42+6×12-4

  =42+72-4

  =114-4

  =110

  教师提问:你是怎么确定运算顺序的?

  5、计算这两题后,你想说些什么?(数字、运算符号一样,就因为一个有小括号,一个没有小括号,运算顺序不一样,导致运算结果也不一样。)

  6、总结四则混合运算的运算顺序,

  (1)明确加法、减法、乘法、除法统称四则运算。

  (2)回忆混合运算的学习,小组合作总结出四则混合运算的运算顺序。

  (3)、交流,形成板书。

  (二)及时练习 加深理解

  1、先说出各题的运算顺序,再计算。

  (1)请学生用和、差、积、商说说运算顺序。

  (2)计算,写出计算过程。

  (3)交流,改错。

  2、学校食堂买来大米850千克,运了三车,还剩100千克,平均每车运多少千克。

  (1)请两位同学来读题,其他同学来说一说你读懂了什么?

  (2)分析数量关系,列式解答,说说算式每一步的意思,再说说运算顺序,看看算式意思是否跟运算顺序相符合。

  3、下面四张扑克牌上的点数,经过怎样的运算才能得到24呢?你能想出几种方法?

  (1)先进行小组合作,看看哪个小组列出的算式最多。

  (2)交流,列出各种方法。

  (6+4-2)×3 6×4÷(3-2) 6

  4、旅行社推出“××风景区一日游”的两种出游价格方案。

  (1)分析两种方案的意思。(第一种方案是按人数买,成人和儿童的票价不一样;第二种方案按团体计价,五人以上就一口价每人100元。)

  (2)共同解决第(1)小题,分别让学生按两种方案分别购票,看看哪种方案购票便宜一些?

  (3)独立解答第(2)小题。(与第(1)小题是同样道理)

  (三)课堂小结 结束新课

  上完了这一节课,你有什么想说的吗?

  第六课时:有关0的运算

  教学目标:

  1、把分散学习的有关0的运算这部分知识系统化,提高学生计算的正确率和整理概括知识的能力。

  2、借助故事引起学生对0的有关知识的回忆,使学习变得主动、积极。

  本课的难点是说明0不能作除数及0为什么不能作除数的道理。

  教学准备:

  课件(零国王勇战食数兽的故事)

  教学过程:

  (一)故事导入

  今天老师给大家讲个故事,故事的题目是——零国王勇战食数兽。请同学们认真地听,仔细地思考,想一想,零国王为什么会战胜食数兽?你对0有什么看法?

  故事开头:一天数字王国突然闯进来一个三只脚的怪兽,吓和数字公民纷纷逃走。怪兽张开血盆大口,一口吞下数24,接着它又吞吃了44。数5吓得脚软,奇怪的是,怪兽看也没看它一眼。

  (1)听故事。

  (2)说说零国王为什么会战胜食数兽?你对0有什么看法?(零国王抓住了食数兽的弱点。看来大家别小看这个0,它虽然表示什么都没有,但是它的作用是不能小看的。)

  (二)知识梳理

  同学们真会听故事,还能听故事来进行分析。今天咱们也来学习有关0的知识。

  1、想一想,你知道哪些有关0的运算?运算时应该注意些什么?

  (1)小组合作进行讨论,大家在组内畅所欲言,派一人记录。

  (2)全班交流,教师板书。

  加法:一个数加上0还得原数。

  举例说明:6+0=6 23+0=23 0+91=91

  减法:被减数等于减数,差是0;一个数减去0还是这个数。

  举例说明:5-5=0 60-60=0 8-0=8

  0的运算

  乘法:一个数和0相乘,得0。

  举例说明:3×0=0 0×9=0

  除法:0除以一个非零的数,还得0;0不能作除数。

  举例说明:0÷5=0 5÷0就无意义

  (3)请几个同学来总结有关0的运算。

  2、如果0作除数结果会怎样?

  引导学生进行分析:A、5÷0表示一个非零的数除以0,从除法的意义上说是什么意思,商是多少,引导学生说出积是5,一个因数是0,求另一个因数,要想0和几相乘得5呢?因为一个数和0相乘仍得0,所以5÷0不可能得到商。B、0÷0,从除法意义上说是什么意思,商是多少,引导学生说出积是0,一个因数是0,求另一个因数,要想0和几相乘得0,然后问:能找到这样的数吗?能,因为0和任何数相乘都得0,这时指出0÷0得不到一个确定的商,所以不研究,最后得出0不能作除数的结论。

  (三)数学游戏

  归纳、整理了0的知识以后,咱们来轻松轻松,做一个数学游戏。出示:

  (1)看清游戏要求,

  (2)分组进行游戏,看看哪个小组找到又快又多,并记录下来。

  (四)巩固提高

  1、口算。

  79+0 6×0 9-0 0-11

  0+35 0÷71 6-6 4×0

  0×53 54+0 54-0 0×900

  以小火车的方式进行,前面的同学说不下去了,后面的同学可以进行抢答

  3、破译密码。

  先计算出圆圈和方框中的数来组成密码。注意计算过程的推导。

  (五)总结全课

  今天你的最大收获是什么?

复数的四则运算教学重点第 4 篇

  内容:四则运算的教学方案

  《义务教育课程标准实验教科书数学(四年级下册)》第3~11页,例3和例4。

  教学目标:

  1、引导学生理解、掌握在没有括号的算式里,两头乘除、中间加减类型题的算法,体会小括号的作用,进一步总结完善四则运算的运算顺序。

  2、借助线段图,提高学生分析问题、解决问题的能力。

  3、在解决问题的过程中,培养学生思维的敏捷性和灵活性。

  教学重点、难点:

  理解“两头乘除、中间加减”类型题目的计算方法,体会小括号的作用。

  教学过程

  一、复习引入创设情境

  师:上节课我们学习了有关混合运算的知识,谁还记得,混合运算都有哪些运算规则?

  根据学生回答,教师板书:

  师:现在是什么季节?冬天大家最喜欢干什么?堆雪人、打雪仗、滑雪一定非常有趣,如果我们组织这样的活动同学们喜欢参加吗?为了更好的组织开展活动,我们要了解一下每个年级活动的项目、参加的人数以及分组的情况。

  二、结合情境探究新知

  (一)理解、掌握“两边乘除、中间加减”类型题目的计算方法

  1出示信息:一、二年级组织堆雪人比赛,一年级有3组参加,每组8人,二年级由2组参加,每组10人,两个年级共有多少人参加比赛?

  师:这个问题你们会解决吗?请你用画图的方法表示出你的想法,列出算式,和小组的同学交流一下。

  (学生小组讨论)

  2汇报交流。

  生1:我们通过画线段图可以清楚的看出,要求两个年级一共多少人,必须先求出一、二年级分别有多少人。

  生2:一年级每组8人,有3组;二年级每组10人有2组,所以要求两个年级一共多少人列式为:8×3+10×2。

  师:大家同意吗?

  生齐:同意,我们也是这样列式的。

  师:同学们真不简单,你们列出的是一个三步计算的综合算式!可这样的算式我们以前没有解答过,你们会算吗?在练习本上试着计算一下。

  (指两名学生板书)

  ①8×3+10×2②8×3+10×2

  =24+10×2=24+20

  =24+20=44(人)

  =44(人)

  师:请同学们观察、比较一下,在小组里谈谈你们的看法。

  生1:我们组觉着第一位同学做的对,即符合题的.意思,也符合运算顺序每一步都是先算乘、后算加,第二位同学两个乘法一起算,不合适。

  生2:我们觉着第二位同学的做法是对的,先同时求出一、二年级分别有多少人,再求两个年级一共多少人,同样既符合题意也符合“先乘除、后加减”的运算规则啊。

  生3:我们也觉着第二种做法是正确的,它不仅符合题的意思和运算规则,结果正确,写起来还简便,我们觉着第二种方法是对的。

  师:现在大家能不能达成共识?第二种方法行不行?

  生齐:行!

  师:我也赞同大家的意见,两边的乘法可以同时计算。

  3小练习

  (1)板书:15÷3+16÷26×4-18÷9。

  师:这两道题表示什么?在小组里说说。

  (交流。)

  生1:第一题表示15除以3的商加16除以2的商得多少?

  生2:表示2个商加起来是多少。

  生3:第二个算式表示4个6的积减去18除以9的商得多少?

  师:大家说的很好,应该怎样算呢?试着做做。

  (生独立计算、集体反馈,略。)

  (2)指名口答运算顺序。

  9×3+25÷560÷5-3×375+5×8+23

  师:仔细观察这几个算式,你有什么发现?

  生:只有两边是乘除法、中间是加减法的算式,我们才可以将两边乘除法同时计算。

  (二)理解、掌握有小括号的混合运算的计算规则

  1?出示信息:三、四年级同学准备举行扔雪球比赛,三年级的有24人参加,四年级有36人参加,如果每6人分一组,四年级比三年级多分几组?

  师:这个问题你会解决吗?请你先画图,再列式解答。

  2?反馈学生作业。

  36÷6-24÷6

  =6-4

  =2(组)

  师:他的想法大家能看懂吗?要求四年级比三年级多分几组?必须先求什么?

  (生答,略。)

  师:仔细看看分析图,这道题你还有别的解法吗?

  生:还可以这样算“(36-24)÷6”。

  师:能给大家说说你是怎么想的吗?

  生:从图上可以看出:四年级的前半部分跟三年级的人数一样多,所以我们可以不用管,只看看四年级比三年级多几人,多出的人数中有几个6就行了。

  师:他的想法对吗?大家有什么问题吗?

  生:为什么要加小括号?

  生:我们必须先求出四年级比三年级多几人,才能再除以6,所以要加小括号。

  师:如果不加小括号36―24÷6行不行?

  生:这样不行,这样就不符合我们刚才的想法了,只有加上括号改变它的运算顺序才能四年级比三年级多几人,也就是先求差。

  师:我们在低年级就知道加小括号能改变运算顺序。(板书:3+2×4)这道题应先算什么?要想先算加法怎么办?(红笔加上括号。)

  3?完善法则。

  师:看看我们前边归纳的运算规则,只有这两条够吗?还需要补充什么吗?

  生1:应该加上“有括号的要先算括号里面的”。

  生2:前边两条也应该加上“在没有括号的算式里”。

  (根据学生的回答完成板书。)

  三、练习

  四、全课总结

  师:我们在计算混合运算的试题时,都有哪些运算规则?通过这两节课的学习,大家有什么收获?

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号