当前位置:首页 > 教案教学设计 > 数学教案

圆心角弦弧

日期:2022-02-05

这是圆心角弦弧,是优秀的数学教案文章,供老师家长们参考学习。

圆心角弦弧

圆心角弦弧第 1 篇

教材分析

《弧、弦、圆心角》是初三数学第二十四章圆的一节重要课程。本节课是在认识了圆,了解了弧、弦等与圆有关的概念的基础上进行的。整节课是以圆的旋转不变性为主线,通过感性认识到理性认识的转化,展开对弧、弦、圆心角之间关系的研究的,是对圆的性质的进一步学习。它将为证明线段相等、角相等提供重要依据,将为今后学习圆的有关内容打下基础,在本章中起着承上启下的重要作用。本节内容为圆的计算和证明提供了广宽的思路。 要学好本节内容,一是基本概念要弄清,二是要掌握弧、弦、圆心角定理,三是此定理的灵活运用。

学情分析

在第23章旋转中,学生知道了圆是中心对称图形,圆心是它的对称中心。这一节内容实际上它还是属于旋转对称的,圆绕圆心旋转任意一个角度,都能与原来的图形重合。这一节课就是根据圆的旋转不变性,推出了弧、弦、圆心角之间的关系。初三学生尽管逻辑思维能力很强,但对于圆的认识还很浅肤,对圆的相关概念很少接触,故而在掌握知识的深度和灵活方面显得呆板,在教学过程中,一是老师讲课要耐心和细致,二是概念要讲透彻,学生基本概念要掌握扎实,三是适量涉足知识的灵活性和问题的多样性,为学好后面知识打好基础。

教学目标

(一)知识与技能:

1.通过观察实验,使学生理解圆心角的概念和圆的旋转不变性;

2.了解掌握弧、弦、圆心角之间的关系,及它们在解题中的应用。

(二)过程与方法:

1.经历圆旋转不变性的知识探索过程,发现圆中弧、弦、圆心角之间的关系。

2.利用计算机演示,发展学生的观察分析能力,探索圆中弧、弦、圆心角之间的关系,并能初步应用。

(三)情感、态度与价值观

1.激发学生探究、发现数学问题的兴趣和欲望;

2.发展学生勇于探索的良好习惯,进一步认识数学知识与生活的密切联系。

教学重点和难点

教学重点:

认识弧、弦、圆心角之间的关系,并运用此关系进行有关的计算和证明。

教学难点:探索定理和推导及其应用。

圆心角弦弧第 2 篇

  本节课的教学策略是通过学生自己动手画图叠合、观察思考等操作活动,让学生亲身经历知识的发生、发展及其探求过程,再者通过教师演示动态教具及引导,让学生感受圆的旋转不变性;并得出圆心角、弧、弦、弦心距四者之间的关系;能用这一关系定理,解决圆的计算证明问题;同时注重培养学生的探索能力逻辑推理能力;力求体验数学的生活性、趣味性,进一步感受圆的美,激发学习兴趣。

  反思这节课,我有以下体会:

  1、重视学生已有知识的复习,从动手操作着手

  通过前一节课“圆是轴对称图形,也是中心对称图形”这一知识的复习,让学生动手操作直观看到真实的世界中的“圆的旋转不变性”,加强学生的感性认识。

  2、用多种感官感受数学,培养数学情感。

  学生在本课中不仅要用耳朵听数学,而且要用眼睛观察数学现象,通过数学教具的演示和教师对定理的讲解来理解数学知识,在探讨、交流、分析中获得数学知识。

  3、注重培养学生的语言概括能力,培养逻辑推理能力

  在定理的结论得出时,让学生用自己的语言概括结论,用符号语言表示结论;在例题的推理过程中,强调每一步的理由,追问理由是学过哪个的定义、定理或已知条件。

  4、重视数学知识的形成过程,让学生感受到学习的快乐。

  教学中引导学生从同圆,等圆两种情况进行分析,用旋转叠合推导圆心角定理的证明过程。定理学完后,马上进行适当的练习加以巩固,让学生在思考与回答的过程中体会到学习数学的快乐。

  5、训练及时,关注中下层学生。

  通过设计四个有梯度的问题,培养学生的发散思维能力。让不同层次学生通过思考,都能有所得,在提问时照顾了中下层学生。

  6、注重知识内容的总结和学习方法的归纳。作业效果良好

  存在的不足:

  1、时间分配不合理,在引导学生证明由圆心角相等得到弦心距相等这一问题时,用了较长时间,导致在备课时预设的一个能力提升题,一个用本节知识解决生活中的几等分圆的实际问题没有时间研究。这样可能不能满足优生的学习需要,没能很好地加强抽象的数学定理与生活实际的距离。

  2、还可让学生多一些动手操作的时间,让学生当小老师,给学生多一些展示机会,在操作中加深对“圆心角定理”推导过程的体验。

  3、我在教学中力求加强学生的归纳能力和语言组织能力的培养,但这方面做的还是很不够。

  4、教学中教师的激情还不够,肢体语言、表情还可丰富些,自身的教学艺术还待进一步提高。

  总之今后还要多学习,多研究,力求把每一节数学课上的精采,上的高效!

圆心角弦弧第 3 篇

教材分析

《弧、弦、圆心角》是初三数学第二十四章圆的一节重要课程。本节课是在认识了圆,了解了弧、弦等与圆有关的概念的基础上进行的。整节课是以圆的旋转不变*为主线,通过感*认识到理*认识的转化,展开对弧、弦、圆心角之间关系的研究的,是对圆的*质的进一步学习。它将为*线段相等、角相等提供重要依据,将为今后学习圆的有关内容打下基础,在本章中起着承上启下的重要作用。本节内容为圆的计算和*提供了广宽的思路。要学好本节内容,一是基本概念要弄清,二是要掌握弧、弦、圆心角定理,三是此定理的灵活运用。

学情分析

在第23章旋转中,学生知道了圆是中心对称图形,圆心是它的对称中心。这一节内容实际上它还是属于旋转对称的,圆绕圆心旋转任意一个角度,都能与原来的图形重合。这一节课就是根据圆的旋转不变*,推出了弧、弦、圆心角之间的关系。初三学生尽管逻辑思维能力很强,但对于圆的认识还很浅肤,对圆的相关概念很少接触,故而在掌握知识的深度和灵活方面显得呆板,在教学过程中,一是老师讲课要耐心和细致,二是概念要讲透彻,学生基本概念要掌握扎实,三是适量涉足知识的灵活*和问题的多样*,为学好后面知识打好基础。

教学目标

(一)知识与技能:

1.通过观察实验,使学生理解圆心角的概念和圆的旋转不变*;

2.了解掌握弧、弦、圆心角之间的关系,及它们在解题中的应用。

(二)过程与方法:

1.经历圆旋转不变*的知识探索过程,发现圆中弧、弦、圆心角之间的关系。

2.利用计算机演示,发展学生的观察分析能力,探索圆中弧、弦、圆心角之间的关系,并能初步应用。

(三)情感、态度与价值观

1.激发学生探究、发现数学问题的兴趣和欲望;

2.发展学生勇于探索的良好习惯,进一步认识数学知识与生活的密切联系。

教学重点和难点

教学重点:

认识弧、弦、圆心角之间的关系,并运用此关系进行有关的计算和*。

教学难点:

探索定理和推导及其应用。

圆心角弦弧第 4 篇

本节课的教学策略是通过通过白板动画演示学生观察、思考、交流合作活动,让学生亲身经历知识的发生、发展及其探求过程,再者通过教师演示动态课件及引导,让学生感受圆的旋转不变*,并能运用圆的对称*研究圆中的圆心角、弧、弦间的关系定理。同时注重培养学生的探索能力和简单的逻辑推理能力。体验数学的生活*、趣味*,激发他们的学习兴趣。

(1)情景引入中运用媒体形象直观的展现了折扇中蕴涵的圆心角、弧、弦之间的关系,激发学生的学习兴趣,并让学生体会到数学来源于生活。

(2)在探究圆的旋转不变*和探究圆心角、弧、弦之间的关系定理时,教师应用白板的旋转功能让学生观察——猜想——*——归纳的数学过程,让学生既轻松又形象直观地获得了新知。

(3)在应用提高过程中,运用白板的链接功能把枯燥无味的数学问题用学生喜爱的三国任务链接起来,让数学也充满了趣味*,同时大大提高了课堂效率。

总的来说,本节课中白板的使用既大大提高了课堂效率,又把数学的课堂变成了生活的课堂,学生探究的课堂,让学生体验到数学的美。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号