日期:2022-02-10
这是整式的乘除经典例题,是优秀的数学教案文章,供老师家长们参考学习。
本章的内容包括:幂的运算、整式的乘法、乘法公式、整式的除法、因式分解.
本章我们将在七年级学习整式的加减法的基础上,继续学习整式的乘法和因式分解,它是代数运算以解决许多数学问题的重要基础.我们可以类比数的运算,以运算律为基础,得到关于整式的乘法运算与因式分解的启发.在中考中,本章是必考内容,主要考查幂的运算、乘法公式、因式分解,特别是因式分解在化简求值中的应用.
【本章重点】
整式的乘(除)法法则、乘法公式及因式分解.
【本章难点】
乘法公式的灵活运用及运用提公因式法和公式法进行因式分解.
【本章思想方法】
1.体会和掌握类比的学习方法,如:通过数的运算,类比归纳得出整式的运算性质.
2.体会转化思想,如:将多项式除以单项式转化为单项式除以单项式进行计算.
3.体会数形结合思想,如:在整式乘法和乘法公式部分,借助于几何图形对运算法则及公式作了直观解释,体现了数形结合的思想方法.
12.1 幂的运算4课时
12.2 整式的乘法3课时
12.3 乘法公式2课时
12.4 整式的除法2课时
12.5 因式分解1课时
2.1整式(1) 教学目标 1使学生理解、掌握单项式的有关概念,能准确地说出给定单项式的系数和次数; 2初步培养学生的观察——分析和归纳——概括能力,使学生初步认识特殊与一般的辩证关系 教学重点和难点 重点:单项式的定义;单项式的系数和次数 难点:单项式的系数和次数 课堂教学过程设计 一、 提出问题,引入“单项式”概念 1、青藏铁路线上,在格尔木到拉萨之间有一段冻土地段,列车在冻土地段的行使速度可以达到 100千米/时,在非冻土地段可以达到120千米/时,请根据这些数据回答问题:列车在冻土地段行驶时: (1)2小时能行驶多少千米? (2)3小时呢? (3)t小时呢? 答案:(1)100× 2=200 (2)100× 3=300 (3)v× t=vt 2、用含有字母的式子填空 (1)若边长为a的正方形的周长为____ _,面积为___ __. (2)铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍,圆珠笔的单价是________元. (3)一辆汽车的速度是v千米/时,它t小时行驶的路程是______千米 (4)数n的相反数是_______. 答案:(1)4a,a2; (2)ab; (3)-n 2、提出问题:以上几个代数式有什么共同特征? 引导学生对上述几个代数式进行观察、分析,让他们自己得出以下结论:4a表示的是数字4与字母a的.乘积;a2表示字母a与a的乘积;ab表示字母a与b的乘积;-n表示数字-1与字母n的乘积,象这样的式子我们叫做单项式,这就是我们今天所要学习的一种最简单式子————单项式. 二、新知识讲授 1、定义:由数或字母的乘积组成的式子叫做单项式 单独一个数或一个字母也叫单项式. 练习 指出下列代数式中,哪些是单项式: 2xy,-4x, a+ b, ,,m,-,-ab 此练习让学生回答,通过此练习,一方面巩固刚刚学过的单项式定义,另一方面是让学生逐步学习如何应用定义去判断“是”或“不是” 答案:2xy,-4x,,,m,-,-ab 2、单项式的系数 在刚才的练习中,单项式 2xy,-4x, ,-,m,-ab 的数字因数分别是几? 待学生逐一弄清以上几个单项式的数字因数后,教师指出“这些数字因数称为单项式的系数”然后,让学生自己说出什么叫单项式的系数 定义:单项式中的数字因数,叫做单项式的系数 练习 指出以下单项式的系数: 3x2,- x2y2z,a2b,-2.15ab3,-m3,0.12h. 在学生回答的基础上,教师指出,单项式的数字因数即为“系数”,要特别注意“系数”必须包括前面的“+”或“-”号,另外,当系数是“1”时,通常省略不写;系数是“-1”时,只写“-”就可以了 本练习答案:3,-,1,-215,-1,012 3单项式的次数 以单项式- x3y2z为例,我们称“- ”为它的系数,让我们再考察一下这个单项式中的字母因数,有x3,y2,zx,y,z的指数分别是3,2,1,称这几个数的和6为这个单项式的次数 定义:一个单项式中,所有字母的指数的和,叫做这个单页式的次数练习 指出下列单项式的次数: 3x2,- x2y2z,a2b,-2.15ab3,-m3,0.12h. 在此练习中,通过具体的单项式,使学生对定义中的“所有”、“指数的和”等关键词语引起注意 本练习答案:2,5,3,4,3,1 三、进一步巩固新知识 1、P55 例1 2、P56练习第1题填表 学生填,对答案 四、小结 1今天这节课我们学习了哪一类代数式?(单项式) 关于单项式,我们又学习了什么?(定义、系数、次数) 2在单项式的定义中,提到了“单独一个数,也叫单项式”,也就是说,以前我们所学过的有理数,都属于单项式,可见,有理数是特殊的单项式 五、作业 1下列代数式中,哪些是单项式?若是单项式请指出其系数和次数abc,-2x3,x+y,-m,3x2+4x-2,xy- a,x4+x2y2+y4,a2-ab+b, πR2,3ab2 P59习题2.1的第1题 2 练习册
整式乘除与因式分解
一.回顾知识点
1、主要知识回顾:
幂的运算性质:
aman=am+n(m、n为正整数)
同底数幂相乘,底数不变,指数相加.
=amn(m、n为正整数)
幂的乘方,底数不变,指数相乘.
(n为正整数)
积的乘方等于各因式乘方的积.
=am-n(a≠0,m、n都是正整数,且m>n)
同底数幂相除,底数不变,指数相减.
零指数幂的概念:
a0=1(a≠0)
任何一个不等于零的数的零指数幂都等于l.
负指数幂的概念:
a-p=(a≠0,p是正整数)
任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.
也可表示为:(m≠0,n≠0,p为正整数)
单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的.每一项相乘,再把所得的积相加.
单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.
3、因式分解:
因式分解的定义.
把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系.
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.
二、熟练掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;
(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法
运用公式法分解因式的实质是把整式中的乘法公式反过来使用;
常用的公式:
①平方差公式:a2-b2=(a+b)(a-b)
②完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
:学习目标
1.会进行单项式除以单项式的整式除法运算。
2.理解单项式除以单项式的运算算理,发展学生有条理的思考及表达能。
学习重点
理解单项式的除法法则,并正确应用
学习难点
正确熟练地运用单项式除法法则进行计算
学生活动
(自主学习、合作探究、展示交流、达标测试)
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号