当前位置:首页 > 教案教学设计 > 数学教案

比和比例教学反思六年级

日期:2022-02-13

这是比和比例教学反思六年级,是优秀的数学教案文章,供老师家长们参考学习。

比和比例教学反思六年级

比和比例教学反思六年级第 1 篇

  第2课时

  【教学内容】

  教科书第66~67页例2、例3及相关练习。

  【教学目标】

  1.通过对分数基本性质的记忆和沟通分数与比、除法之间的联系,理解比的基本性质。

  2.能够运用比的基本性质把比化成最简单的整数比。

  3.渗透转化的数学思想,培养学生的抽象概括能力,并使学生认识事物之间都是存在内在联系的。

  【教学重、难点】

  理解比的基本性质,并运用比的基本性质把比化成最简单的整数比。

  【教学过程】

  一、复习准备

  1.求比值。

  8∶4=48∶12=16∶8=

  24∶18=40∶16=15∶5=

  .准备题。

  (1)找出下列分数中相等的分数,并说说你是根据什么找的?(略)

  学生找出后,教师作引导性提问:它们为什么相等?谁能完整地说出分数的基本性质?

  (2)在()内填上适当的数。

  3÷4 =( )4=( )40= ( )÷12 =0.75

  58=5:( )

  6:7 =( )7=( )7

  9:( )=( ):16

  教师:由上面这两组题你想到了什么?

  小结: 根据分数与除法的关系,除法与比的关系,比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值。

  比也可以写成分数的形式,如5:8可以写成5/8。

  二、学习新知

  1.出示例2:观察下面的比是怎样变化的。

  200/240=20/24=10/12=5/6

  ↓ ↓↓↓

  200∶240=20∶24=10∶12=5∶6

  独立观察,思考:比的前项、后项发生了什么变化?

  分组讨论:看看上面的这个例子,想一想:在比中有什么样的规律?

  学生进行小组总结后,小组间交流汇报。 通过交流总结出比的基本性质。

  2.概括比的'基本性质:比的前项和后项同时乘以或者同时除以相同的数(0除外),比值不变。

  3.应用比的基本性质化简比。

  (1)让学生在例2中找出你认为最简单的整数比,明确什么是最简整数比。

  (2)出示例3:化简下面各比。

  ①15∶12②14∶56

  ③30∶60∶120

  师生共同观察,找出各组比的特征,然后进行分析 、化简。

  第①题:这个比的前项和后项都是整数,如何化简?(用比的前、后项分别除以它们的最大公约数,直到前后项是互质数为止)

  第②题:这个比的前项和后项都是什么数,怎样才能把它们转化成整数比?(学生观察分析后,独立探索化简的方法,再交流优化的化简方法)

  学生交流完后,教师进一步作小结:比的前项和后项都是分数的,一般把比的前项和后项同乘两个分数分母的最小公倍数,把它们转化成两个整数比,再进一步化简。

  第③题:这个比有什么特点?(三个数的连比)又如何化简呢?化简两个整数比的方法对于化简三个整数连比是否适用呢?

  学生讨论后尝试化简,填在书上。

  教师提示:在三个数的连比中,比号不表示除号。

  三、巩固练习

  1.用已经学过的知识试着将第67页“试一试”中的比化成最简整数比。

  学生化简后交流反馈,说说方法。师生共同小结方法及注意点:应用比的基本性质把整数比、小数比、分数比化成最简单的整数比时,第一步一般都化成整数比,接着再利用比的基本性质把比的前、后项同除以它们的最大公约数,使比的前、后项成为互质数。

  2.出示练习题:化简下面各比,并求出比值。

  比最简单的整数比比值

  9:54

  34∶67

  5.8∶2.9

  200∶150∶26

  讨论:化简比与求比值有什么区别?(求比值就是求“商”,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但是不能写成带分数、小数或整数)

  3.学生独立完成练习十五第3题,完成后用投影仪集体订正。

  4.拓展练习。

  (1)六(3)班男生人数是女生的1.2倍,男、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( )。

  (2)一个长方形周长是30厘米,长与宽的比是7∶3,求长与宽各是多少厘米?

  四、课堂小结

  通过今天的学习,你又掌握了哪些知识?什么是比的基本性质?应用比的基本性质如何化简比?

比和比例教学反思六年级第 2 篇

  教学内容:

  教材第84页例1---3题,练习十七第1、3题。

  教学目标:

  1、进一步理解比和比例的意义与基本性质,掌握比和分数、除法的关系。能够正确、迅速地求出比值和化简比。

  2、应用比的意义求出平面图的比例尺,并根据比例尺求图上距离和实际距离。

  3、体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

  教学重点:

  掌握比和比例的意义与基本性质。

  教学难点:

  根据比例尺求图上距离和实际距离。

  教具准备:

  多媒体课件

  教学过程:

  一、 导言引入课题

  比和比例(一)

  二、教学例1

  先在下表中写比和比例的一些知识,再举例说明。

  比 比例

  意义

  各部分名称

  基本性质

  三、教学例2

  比和分数、除法有什么联系?先填写下来,说一说它们的区别。

  联系 例子

  各部分名称

  分数 分子 分数线 分母 分数值

  除法

  比

  做一做:5:6=( )( )

  四、教学例3

  比的基本性质、分数的基本性质、商不变规律之间有什么联系?

  1、学生交流

  2、化简比。

  3、化简比与求比值有什么不同之处?

  一般方法 结果

  求比值

  化简比

  五、解比例

  X= :2【说一说思路和方法】

  六、比例尺

  1、什么叫做比例尺?

  2、说出下面各比例尺的具体意义。

  ①比例尺1:3000000表示_____________

  ②比例尺20:1表示 _____________

  3、求比例尺: 一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图的比例尺是多少?

  4、求实际距离:在比例尺是 的地图上,量得A到B的距离是5厘米。求AB两地的实际距离?

  5、求图上距离:甲乙两地相距200千米,在比例尺是 的地图上,甲乙两地用多少厘米表示?

  七、知识应用

  练习十七第1、3题。

  八、总结梳理

  回顾本节课的学习,说一说你有哪些收获?

  板书设计:

  比和比例(一)

  比和比例的`意义与性质。

  比和分数、除法的关系。 比和比例(一)

  比、比例的基本性质的用途。

  比例尺。

  比例尺的应用。

  教学反思:

  在教学中,让学生重温小学阶段比和比例的有关知识并进行系统整理。先让学生回忆,配合相关的练习题,让学生进行训练,加深学生的理解。进一步理解掌握比和分数、除法的关系。能够应用比的意义求出平面图的比例尺,并根据比例尺求图上举例和实际距离培养学生用数学眼光观察生活的习惯。

比和比例教学反思六年级第 3 篇

  教学目标:

  培养学生的观察能力、判断能力。

  学法引导:

  引导学生通过观察、讨论、计算、探究、验证等方法研究比例的意义和比例的基本性质。

  教学重点:

  比例的意义和基本性质。

  教学难点:

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学过程:

  一、回顾旧知,复习铺垫

  同学们,今天数学课上有很多有趣的问题等待你们来探索和发现,希望大家都能有收获。大家有没有信心?

  1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

  教师把学生举的例子板书出来

  2、老师也准备了几个比,想让同学们求出他们的比值,并根据比值分类。

  2:3 4.5:2.7 10:6

  80:4 4:6 10:1/2

  提问:你是怎样分类的?

  教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:两个比相等4.5:2.7=10:6 12:16=3/5:4/5 80:4 =10:1/2)像这样的式子叫做比例。这就是这节课我们要学习的内容。(板书课题:比例的意义)

  二、引导探究,学习新知

  1、教学比例的意义。

  (1)教学例题。

  先出示教材上的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。再出示四面国旗长、宽的尺寸。

  师:选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。

  提问:根据求出的比值,你发现了什么?(两个比的比值相等)

  教师边总结边板书:因为这两个比的比值相等,所以我们也可以写成一个等式

  2.4∶1.6 = 60∶40 像这样由两个相等的比组成的式子我们把它叫做比例。

  师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?

  比例也可以写成分数形式:4.5/2.7= 10/6请同学们很快地把黑板上我们写出的比例,改写成分数形式。

  (2)引导概括比例的意义。

  同学们,老师刚才写出的这些式子叫做比例,那么谁能用一句话把比例的意义总结出来呢?(根据学生的回答板书比例的意义。)

  (3)判断。举一个反例:那么2:3和6:4能组成比例吗?为什么?

  “从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?(看两个比的比值是否相等)如果不能一眼看出两个比是不是相等的,怎么办?”(根据比例的意义去判断)

  根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比比值求出来以后再看。

  (4)比较“比”和“比例”两个概念。

  教师:上学期我们学习了“比”,现在又知道了“比例”的`意义,那么“比”和“比例”有什么区别呢?

  引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  (5)反馈训练

  用手势判断下面卡片上的两个比能不能组成比例。

  6:3和12:6 35:7和45:9

  20:5和16:8 0.8:0.4和4:2

  2、教学比例的基本性质。

  (1)自学课本,了解比例各部分的名称,理解各部分的名称与各项在比例中的位置有关。

  ( 2 )检查自学情况:指名说出黑板上各比例的内外项。

  (3)探究比例的基本性质。

  师:在比例的内外项之间,存在着一个有趣的特性(比例的基本性质),大家想不想研究?(板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书

  两个外项的积是4.5×6=27

  两个内项的积是2.7×10=27

  “你发现了什么?”(两个外项的积等于两个内项的积。)板书:4.5×6=2.7×10

  (4)计算验证,达成共识。

  师:“是不是所有的比例都有这样的性质呢?”让学生分组计算判断前面的比例式,发现所有的比例式都有这个共同的规律。

  (5)引导小结比例的基本性质。

  师:通过计算,大家,谁能用一句话把这个规律概括出来?

  教师归纳并板书:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。

  师:“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着4.5/2.7=10/6) “这个比例的外项是哪两个数呢?内项呢?”

  学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。

  (6)判断。前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。

  反馈训练:应用比例的基本性质判断3:4和6:8能不能组成比例。

  三、巩固深化,拓展思维。

  (一)判断

  1.两个比可以组成一个比例。 ( )

  2.比和比例都是表示两个数的倍数关系。 ( )

  3.8:2 和1:4能组成比例。 ( )

  (二)、用你喜欢的方式,判断下面那组中的两个比可以组成比例。把组成的比例写出来。

  (1) 6:9和 9:12 (2)14:2 和 7:1

  (3) 0.5:0 .2和 5:2 (4)0.8:0.4和0.3:0.6

  (三)填空

  (1)一个比例的两个外项互为倒数,则两个内项的积是( ),如果其中一个内项是2/3,则另一个内项是(),如果一个比例中,两个外项分别是7和8,那么两个内项的和一定是()。

  (2)如果2:3=8:12,那么,()x()=()x()。

  (3)写出比值是4的两个比是()、(),组成比例是()。

  (4)如果5a=3b,那么,a:b=():( )

  (四)下面的四个数可以组成比例吗?如果能,能组成几个?把组成的比例写出来。

  2 、3 、4和6

  拓展题:猜猜括号里可以填几?

  5:2=10:( ) 2:7=( ):0.7 1.2:2.5=( ):25

  四、全课小结,提高认识

  通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

  五、布置作业。

  练习六2、3、5

比和比例教学反思六年级第 4 篇

  教学内容:

  教材第84页例4,练习十七第2、4----7题。

  教学目标 :

  1、理解正、反比例的意义。能正确判断两种量是否成正比例或反比例。能熟练地运用比例来解决有关问题。

  2、经历交流、讨论、练习等学习过程,使学生进一步认识事物之间的联系和发展变化的规律,提高学生运用比例来解决有关问题的能力

  3、培养学生用发展变化的观点来分析问题的`能力,渗透函数思想。

  教学重点:

  掌握正、反比例的意义。

  教学难点:

  正确判断两种量成什么比例。

  教具准备:

  多媒体课件。

  教学过程:

  一、明确学习任务

  出示课题

  二、正、反比例的意义

  1、例4:你是怎样判断两种量成正比例还是成反比例的?

  正比例

  ①两种相关联的量;

  ②其中一种量增加,另一种量也随着增加,一种量减少,另一种量也减少;

  ③两种量的比值一定。

  反比例

  ①两种相关联的量;

  ②其中一种量增加,另一种量反而减少,一种量减少,另一种量反而增加;

  ③两种量的积一定。

  2、你能用字母表示正、反比例的关系吗? =k(一定) 成正比例

  y =k(一定) 成反比例

  三、判断两种量是否成正比例或反比例。成什么比例?

  ①速度一定,路程和时间。

  ②正方形的边长和它的面积。

  ③订《少年报》数量和所需钱数。

  ④小明从家到学校,行走的速度和时间。

  ⑤圆的周长和半径。

  ⑥圆的面积和半径。

  四、用比例解决问题。

  1、说一说用比例解决问题的步骤。

  2、举例:修一条公路,全长12km,开工3天修了1.5km。照这样计算,修 完这条公路一共需要多少天?

  A.两种相关联的量是什么?

  B.两种量成什么比例?说明理由,写出等量关系式

  C.设未知数X,列出比例式

  D.解比例并检验

  五、知识应用

  独立完成练习十七第2、4----7题。

  六、课堂总结

  回顾本节课的学习,说一说你有哪些收获?

  板书设计:

  比和比例(二)

  A.认真审题,找出两种相关联的量;

  B.判断两种量成时难免比例;用比例解决问题的过程、步骤

  C.设未知数X;

  D.列出比例式(含有未知数);

  E.解比例、检验。

  教学反思:

  在教学中,以学生为主体,教师为主导,训练为主线。先让学生回忆,重温小学阶段正、反比例的意义及用比例知识解决问题的有关知识并进行系统整理,配合相关的练习题,让学生进行训练,加深学生的理解提高学生运用比例来解决有关问题的能力。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号