日期:2022-02-14
这是小学烙饼问题解题思路,是优秀的数学教案文章,供老师家长们参考学习。
本节课让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用。
成功之处:
1、重视学生动手操作,在操作中发现规律。在教学中让学生利用准备的圆片进行动手操作,通过操作学生会出现如下几种情况:
(1)每次烙完一张饼,6+6+6=18(分钟)
(2)第一次烙1号和2号饼的正面,第二次烙1号和2号饼的反面,第三次烙3号饼的正面,第四次烙3号饼的反面,3+3+3+3=12(分钟)
(3)第一次烙1号和2号饼的正面,第二次烙1号的反面和3号饼的正面,第三次烙2号和3号饼的反面,3+3+3=9(分钟)
然后教师让学生进行观察,哪种方法可以尽快吃上饼呢,为什么?小组进行交流和讨论,最后达成共识:每次总烙2张饼,别让锅空闲,这样应该最省时间。
在此基础上,教师进一步提出问题:如果要烙4张饼、5张饼、6张饼……呢?你发现了什么?由此得出:饼的张数×每面烙的时间=所需最少时间。
2、延伸拓展,启迪思维。在学生发现烙饼的规律后,教师提出当每次最多能烙3张饼,这个规律是否依然适用呢?你又会发现什么呢?学生经过思考发现只要把饼的张数×每面烙的时间=所需最少时间转化为总面数÷每次可烙的面数×每面烙的时间=所需最少时间就可以得出答案。在这个过程中“总面数÷每次可烙的面数”实际上就等于饼的张数。
不足之处:
由于对烙饼问题进行了拓展,导致练习时间不充分,学生对于烙饼问题的规律掌握不够熟练,出现了应用规律解决问题时学生对于每面烙的时间理解不到位,把每面烙的时间和烙一张饼所用的时间混淆,没有注意到必须用饼的张数乘每面烙的时间。
再教设计:
对于烙饼问题的拓展可以留给学生课后进行思考,应该留有更多的时间对本节课的问题进行针对性的训练,不留知识上的盲点。
教学目标与知识与技能:
1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。
2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。
过程与方法:
使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。
情感、态度和价值观:
使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。教学难点:探究解决问题的最优方案。
教学过程:
一、创设情境,学习新知(课件出示例1图)
星期天的中午,小东的妈妈在厨房准备为全家人烙饼。(板书:烙饼)师:请同学们猜一猜,这节课我们会学习有关“烙饼”的什么知识?生:教我们怎样烙饼。师:板书:怎样烙饼
生:烙饼需要多少时间。师:板书:烙饼需要多少时间
师:怎样烙饼最节省时间。师:板书:怎样烙饼最节省时间
二、探究烙饼的“优化”问题。
(一)探究烙1—2张饼
师:今天这节课就学习这些问题,请看大屏仔细观察,从图中你得到了哪些数学信息?
预设:生1:锅里每次最多只能同时烙2张饼,每张饼烙两面,每烙一个面需要3分钟。
师:想一想:烙一张饼需要几分钟?怎样烙?
预设:a:先烙饼的正面需要3分钟,再烙饼的反面需要3分钟,一共需要6分钟。
师:烙2张饼,最快需要几分钟?怎样烙?
生1:6分钟。可以把2张饼同时放进锅里,先烙它们的正面,需要3分钟;再烙它们的反面,需要3分钟;共需要6分钟。
师:怎么不一张一张地烙呢?
生:这样需要12分钟,太浪费时间了。
小结:我们烙两张饼时,可以先同时烙饼的正面,用了3分钟;再同时烙饼的反面,用了3分钟这样烙两张饼就需要6分钟。
(二)探究烙3张饼
师:爸爸、妈妈和小东每人一张饼,最少烙几张?(点击课件)(3张)师:锅里每次最多只能烙2张饼,那3张饼怎样烙时间最短呢?想一想.。用你手中的学具烙一烙,同桌说说你用了几分钟是怎样烙的。
师:谁愿意把你烙饼的方法介绍给大家。(学生上黑板动手烙,边烙边说)
预设:生1:一张一张烙,18分钟。
生2:先烙2张再烙1张,12分钟。
生3:9分钟。
师:噢,他用了9分钟,和他一样的请举手,谁听懂这种方法了,上来给大家再说一说。(指1名说)
师:比较:烙3张饼同学们想出了3种烙法,哪一种方法能让小东一家尽快吃上饼?(学生比较)
师:这3种方法中,9分钟是烙3张饼所用的时间最短的,我们就把(烙3张饼所需时间最短的)这种方法,叫烙3张饼的最佳方法。(教师板书最佳方法)师:我们来看看小东的妈妈是怎样烙的?请看大屏。(课件演示烙3张饼,课件边演示,师边小结)
小结:先把饼1、饼2同时放进锅里,先烙饼1、饼2的正面,3分钟后,取出饼1,放入饼3,再同时烙饼2的反面和饼3的正面,3分钟后,饼2烙好了,取出饼2,再放入饼1,再同时烙饼1和饼3的反面,又过了3分钟,饼1和饼3烙好了,这样烙3张饼就用了9分钟。
师:看完后师问:小东的妈妈是用什么方法烙的?(也是用最佳方法烙的)师:使用这种方法时,你发现了什么?(学生说不上)师:对,使用最佳方法时,锅里面必须同时放2张饼(让学生接2张饼)
预设:学生能说上生1:用的时间短。
生2:锅里每次都有2张饼→我们一起来看是这样吗?课件回放
师:学生再操作:好请同学们用烙3张饼的最佳方法再烙一次,边烙边说给你的同桌听。
(三)、探究烙4—6张饼
师:(出示表格,边说边点击表格)刚才烙2张饼时可以2张2张烙,所需时间是6分钟,烙3张饼时可以用烙3张饼的最佳方法,所需时间是9分钟。想一想,如果烙4张饼,怎样烙时间最短?
预设:a:2张2张烙,需要12分钟→噢。2张2张烙大家同意吗?课件小结:烙4张饼时可以2张2张烙,烙2次,需要12分钟。或者用烙2张饼的方法烙3次。
师:想一想,如果要烙5张饼,怎样烙时间最短?
生1:2张2张烙,烙2次,再烙1张,需要18分钟。(有不同烙法吗?)生2:先同时烙2张,烙1次,再用最佳方法烙3张,需要15分钟。(大家说哪种方法是烙5张饼的最佳方法)
小结:我们烙5张饼时,先烙2张,烙1次,再用最佳方法烙3张,需要时间最短是15分钟。
师:烙6张饼呢?谁愿意来说说?
预设:a:2张2张烙,烙3次,需要18分钟→你们同意吗?
师:3张3张烙,烙2次,需要18分钟→你们同意吗?
师:看来,烙6张饼时有两种烙法:可以2张2张烙,烙3次,或者3张3张烙,烙2次,所需时间都是18分钟。
师:请仔细观察,烙饼的张数和烙饼所需要的时间你发现了什么?
预设:生1:每多烙一张饼,时间就增加3分钟。→那我们看看是不是这样的呢?
师:还发现了什么?
在《烙饼问题》一课中,感触颇深。《烙饼问题》,其教学目标主要是使学生通过简单的实例,初步体会运筹思想在解决实际问题中的应用,认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识,培养学生解决问题的能力。
“烙饼”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕“怎样烙饼,才能尽快吃上饼?”展开教学,设计了烙双张饼,单张饼的探究过程。双张饼以烙2张、单张饼以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。利用扑克牌代替饼,并让学生以双手为教具,体会烙饼的过程,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程,感觉效果不错。
本节课的重点:优化的思想——“同时”“节省时间”。小学生关于“烙饼”并无过多的生活经验,大多数都局限于“一张一张地烙”。因此,在教学中我借助所给的条件“一口锅内可以放两张饼”,让学生进行比较,明白“同时烙两张”会“节省时间”,从而渗透“优化的思想”。同时也为后面探究“四张饼”“六张饼”……的“最优方案”打
好基础,使学生认识到“保证每次锅中有两张饼”,烙饼的时间才会最短。
本节课的难点:规律的得出结论——饼的张数×烙一张饼的时间=最短时间(一张除外)。突破这个难点时,我把“力气”都使在“烙三张饼”的问题上。确实,在让学生认识到“同时烙两张饼可以节省时间”后,三张饼的问题是教学难点的“突破口”。在此,我给学生提供充分的时间和空间,鼓励学生上台动手操作,探究“烙三张饼最少用多长时间”。之后组织学生交流汇报,教师相机引导,使学生认识到“三张交换烙,保证每次锅中有两张饼”才是最优方案,所用时间“9分钟”才最少。
“两张饼”“三张饼”的问题做为重点,让学生弄清楚后,在后面的探究中,学生自然会认识到张数为双时,两张两张同时烙;张数为单时,先两张两张同时烙,剩下的三张交换烙,那么烙再多张数的饼学生也不会再有问题。同时,根据烙2、3、4……张饼所用的时间,学生很快会得出“饼的张数×烙一张饼的时间=最短时间”的规律,所有的问题迎刃而解。最后探讨烙一张饼的需要时间,得出最终的结论:饼的张数×烙一张饼的时间=最短时间(一张除外)。
数学广角给学生提供了一个亲近生活的机会,一个体验生活的平台。但因为大多数学生缺少生活经验,所以学起来比较难。我们老师应发掘更多的生活数学问题让学生在实际生活中去解决。
本节课不足的方面:整节课主要以师生探究为主,在探究过程中留给学生的时间和空间太少,应该以学生为主体,充分发挥教师的主导作用,尽量让学生多说,这样才能暴露出学会存在的问题,教师再进行引导和指导。其次,没有对学生的回答作出针对性的评价,评价语言单一。今后还需要向两个方面努力,争取早日成为一名优秀的教师。
教学内容:义务教育课程标准实验教科书四年级上册112页内容
教学目标:
知识与技能:1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。
2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。
过程与方法:使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。
情感、态度和价值观:使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。
教学难点:探究解决问题的最优方案。
教具准备:硬币、若干张圆纸片(涂上正反不同颜色)、多媒体课件。
教学时间:一课时
教学过程:
一、创设情境,谈话导入,学习新知
同学们早上你们的家人给你们做了什么好吃的?老师的家人给老师烙的饼。你们知道吗厨房里也有数学问题。想知道是什么吗?(课件出示例1图)小华妈妈正在为全家人做自己的拿手绝活——烙饼。(板书课题:数学广角——烙饼问题)
(一)师:从图上你能得到哪些信息?学生观察、理解图中的内容。(目的让学生了解一个锅可以烙两张,每面都需要烙。)
师:妈妈烙饼的一面需要几分钟?一张饼最少需要几分钟?
生:3分钟、6分钟(学生对饼需要烙两面有直接的了解)
师:“如果妈妈要烙2张饼最少需要几分钟,怎样烙?”
生:12分钟、6分钟(让学生讨论出6分钟是对的)
让学生用圆纸片在黑板演示。(其他学生用硬币操作)
师:那么烙4张饼那?
生讨论并让同学黑板演示。(其他同学用硬币操作)
师引导6张饼、8张饼、10张饼需要多少分钟。(将上述张数和总用时对应板书黑板上)
师:同学们看黑板上的这些张数和总用时,你们发现了什么?
生讨论总结出双张数×3=总用时
(二)师:爸爸、妈妈和小丽各吃一张饼,一共要烙3张饼呢,烙3张饼需要多少时间,看看谁用的时间最短,能最早让他们吃上饼。(提示学生每次锅里同时能烙两张饼)
1、学生操作,探究烙3张饼的方法。(让学生用发的硬币烙一烙,同桌之间、小组之间说说用了几分钟,是怎样烙的。)
2、学生演示烙饼法。
师:谁愿意把你烙饼的方法介绍给大家。(几位不同意见的学生上黑板动手烙,边烙边解说)让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?”
生得出结论:9分钟是烙3张饼所用的时间最短的。
师:谁能再把如何9分钟就能烙好饼的方法再和同学们分享一下。(学生黑板边演示边解说)
师:使用这种方法时,你发现了什么?(使用快速烙饼法,锅里面必须同时放2张饼。)
让学生用烙3张饼的快速烙饼法再烙一次,边烙边给同桌解说(烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)
师引导:那么烙5张饼需要多少分钟那?7张、9张那?
学生自己动手并同桌间讨论,得出结论。教师板书张数与总用时。(生得出5张饼可以先烙2张,再烙3张。7张、9张同理)
师提问:同学们发现黑板上单数饼与总用时存在怎样的关系?
生总结出单张数×3=总用时
引导出双张数、单张数与总用时的关系都是一样的进而总结出烙饼问题的一个规律:张数×3=总用时 (由3是单面时间)进一步总结出张数×单面时间=总用时。
二、实践应用
课件出示114页做一做第1题。
教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”
1、引领理解题意。
2、全班交流(一般会从等待时间考虑,可以提示中间桌子是一位老伯伯。)
三、全课总结
1、这节课你学到了什么?(让学生自己总结)
2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号