当前位置:首页 > 教案教学设计 > 数学教案

等式的性质教案五年级

日期:2022-02-17

这是等式的性质教案五年级,是优秀的数学教案文章,供老师家长们参考学习。

等式的性质教案五年级

等式的性质教案五年级第 1 篇

教学目标

①了解等式的两条性质;

②会用等式的性质解简单的(用等式的一条性质)一元一次方程;

③培养学生观察、分析、概括及逻辑思维能力;

④渗透“化归”的思想.

教学重点:理解和应用等式的性质

知识难点:应用等式的性质把简单的一元一次方程化成“x=a”.

教学过程

一、复习导入新课

1. 什么是等式?

2. 什么是方程?

3. 等式的一半形式?

学生举手回答

二、实验探究,学习新知

1、PPT显示天平图片

把一个等式看作一个天平,等号两边的式子,看作天平两边的物体,

则等式成立可以看作是天平两边保持平衡。

(1)由它你能发现什么规律?

如果在平衡天平的两边都加(或减)同样的量,天平还保持平衡.

(2)等式有什么性质?

学生仔细观察图片,师生共同总结

等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.

(3)性质检验 学生口述

(4)由它你能发现什么规律?如果在平衡天平的两边都扩大或缩小相同的倍数,天平还保持平衡.

(5)等式有什么性质?

教师引导学生总结

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.

注意:

1. 等式两边都要参加运算,并且是作同一种运算.

2. 等式两边加或减,乘或除以的数一定是同一个数或同一个式子.

3. 等式两边不能都除以0,即0不能作除数或分母.

学生生练习,独立完成

(6)例 利用等式的性质解下列方程

解:等式性质二:

合并同类项:

系数化为1:

(7)巩固练习 学生板练

三、总结

(1)等式的性质。

(2)等式性质的应用。

四、作业

数学三维练习册

等式的性质教案五年级第 2 篇

  教学目标:

  1、通过学习,使学生知道等式两边同时加上或减去同一个数,所得的结果仍然是等式。

  2、根据等式的性质(一)学会解决含有加、减号的方程。

  3、有意识地培养学生的自学能力。

  教学重点:会解决含有加、减号的方程。

  教学难点:理解方程的含义。

  教学过程:

  一、教学例3

  出示图,学生根据图独立填空。

  根据学生的回答,板书:

  20=20 20+10=20+10

  X=50 X+20=50+20

  50+a=50+a 50+a-a=50+a-a

  X+20=70 X+20-20=70-20

  提问:比较两边的算式,你有什么发现,在小组里说说。

  全班交流,引导学生说出:等式两边同时加上或减去同一个数,所得

  的结果仍然是等式。这是等式的性质。

  独立完成练一练第1题

  二、教学例4

  学生自学,不懂的问题和同组同学交流,能解决的就小组内交流。

  全班交流:例4中还有什么不懂的地方提出来,能由学生解决的就由

  学生解决,学生解决不了的教师解决。

  一是方法:根据等式的性质把含有未知数的这边化简成就含有一个未

  知数。

  二是检验:把计算的结果代到原式,看左右两边是否相等。

  三强调书写的格式。

  小结:求方程中未知数值的过程,叫做解方程。

  完成试一试练一练的'第2题。

  学生独立完成后集体订正,重点帮助有困难的学生,针对学生出错的

  地方及时分析错误原因,帮助他们弄懂。

  三、课堂作业

  练习一的第4、5、6题。

  第4、6题做在书上,第5题写在作业本上。

  板书:

  等式的性质

  等式两边同时加上或减去同一个数,所得的结果仍然是等式。

  这时等式的性质。

  X+10=50

等式的性质教案五年级第 3 篇

一、学情分析:作为初一学生(132班和137班)在小学时已经对等量关系和等式的性质有所了解,通过本节课的学习,目的是要使学生从天平的特点中归纳得出等式的性质。

二、说教材

1、教材所处的地位和作用

新课标对本节课的要求是:掌握等式的性质。在前面一节课的学习中,学生掌握了一元一次方程的概念和初步应用后,需要解决的是一元一次方程的解法。本节内容借助于等式的性质这一工具来解一元一次方程。首先,通过天平的实验操作,使学生学会观察。尝试分析归纳等式的性质。然后,利用等式的性质解一元一次方程。通过解方程的学习提高学生的观察问题、解决问题的能力。

2、教育教学目标。

根据以上对教材的理解与内容分析,考虑到学生已有的知识结构和心理特征,制定如下教学目标:

(1)知识与技能:探究等式的性质, 并能利用等式的性质进行等式变形、解简单的一元一次方程.

(2)过程与方法:通过实验培养学生探索能力、观察能力,归纳能力和应用新知识的能力。

(3)情感态度价值观:积极参与数学活动,体验探索等式性质过程的挑战性和数学结论的确定性,建立学生学好数学的信心。

3、教学重、难点

为了使学生能比较顺利地达到教学目标,我确定了本节课的教学重、难点:

教学重点:探究等式的性质,能根据等式性质进行等式变形、解简单的一元一次方程.

教学难点:利用等式的性质把简单的一元一次方程变形为x = a (常数)的形式; 正确理解等式性质2中除数不能为0.

4、教学准备:多媒体课件、小黑板

三、说教学策略

(一)教学手段:如何突出重点、突破难点,从而实现教学目标,我在教学过程中利用多媒体演示拟计划进行如下操作:

1.读(看)——议——讲结合法。

2.图表分析法。

3.读图讨论法。

4.教学过程中坚持启发式教学的原则。

(二)教学学法分析

坚持“以学生为主体,以教师为主导”的原则。即“以学生活动为主导,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则。根据初一学生的心理发展规律。联系实际安排教学内容,采用学生参与高度的学导式讨论教学法、师生交谈法、图象信号法、问答法、教学课堂讨论法,使学生动口、主动探索、发现问题、解决问题、互动合作、归纳概括、形成能力,突出学生的主体地位。在采用问答法时,特别注重不同难度的问题。提问不同层次的学生面向全体,使基础差的学生也有表现的机会,培养其自信心,激发学习热情,有效开发各层次学生的潜在能力求使每个学生都在原有基础上得到发展,同时通过课堂练习和课后作业启发学生。在教学中要积极培养学生数学学习兴趣和动机。明确学习目的,教师应在课堂上充分调动学生积极性,激发来自学生主体的最有力的动力。

实际上,青少年好动,注意力易分散,爱发表见解。希望得到老师的表扬所以在教学中应抓住学生这一生理特点。一方面运用直观生动的形象,引发学生兴趣,使他们的注意力始终集中在课堂上。另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

四、教学过程分析

(一)导入新课 、展示目标

首先我出了一些可以看出方程解的题目,让学生回答,由易到难,激起学生学习的欲望,紧接着就引入等式的定义,从而使学生明白解方程先要研究等式,从而引入课题。

(二)自主探索、分组合作

由于学生的认知结构是由简单到复杂,由具体到抽象的过程,因此在这一环节中,我分两个方面来教学:等式的性质1由老师课件演示,学生观察归纳概括;。

学习等式的基本性质1

1、具体情境,感受天平平衡

我利用多媒体依次展示天平图的各个操作。让学生通过观察,用语言来描述发现,与同桌交流。这样由具体演示到抽象概括,使学生记忆深刻,充分体现了学生为主体,教师为主导的原则。

2、总结抽象,认识规律

通过上面的观察,让学生分组讨论:如何用算式表示实验结果?学生交流后,教师进行课件演示。

然后学生抽象概括出:等式两边同时加上同一个数,等式仍然成立。

教师指出这是等式的一个非常重要的性质。板书:等式的基性质

本节课,让学生经历一种从平衡到不平衡再到新的平衡的过程,体验变化是怎样产生的,怎样从打破平衡,又怎样达到新的平衡。从而培养了学生观察能力和抽象概括能力。

3、提出假设,验证规律

我接着提问:如果天平两边减去相同的质量,天平会有什么变化?

让学生先独立思考,然后教师课件演示。你又发现了什么规律?怎样用等式描述?得出等式两边同时减去同一个数,等式仍然成立。

并且由以上两条规律得出:等式的两边同时加上或减去同一个数,等式仍然成立。

4、再次设疑,深入验证

如果在天平两边同时加上或减去不同的质量,天平会有什么变化?

学生经过思考得出:等式的两边加上或减去的必须是同一个数,才能使等式成立。这样符合学生的认知规律,从实践认识,再到实践认识的过程。

学习等式的性质2

教师再用课件展示天平图,学生通过观察,归纳得出:等式两边同时乘或除以同一个数(除数不能为0),等式仍然成立。

等式基本性质2的推导在性质1的基础上,让学生自己通过观察探究,运用知识的迁移得出,这样培养了学生逻辑思维能力,抽象概括能力和口头表达能力。

(一)汇报导学 解疑释难

等式的性质: (1)若a=b,则a±c=b±c

(2)若a=b,则ac=bc,

注意:(1)等式两边都要参加运算,且是同一种运算.

(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子.

(3)等式两边不能都除以0,即0不能作除数或分母.

在这个环节中把等式的两个性质展示出来,我特别提到了三个注意:因为这是在等式性质解方程中容易出错的地方,就是希望同学们认真细心,正确利用性质解题。

四、当堂训练 达标测评

我在练习中设计了三道题,从简单的填空到判断变形对错,到最后的解方程,方程的四道题也是有简单到复杂,总之练习题的设计,低起点,小台阶,循序渐进,符合学生接受知识的特点,是那些平时不举手的同学也积极参与,竟然问题也答得很好。从这些方面培养了学生的灵活性,使学生获得成功的满足感。

小结:

用简单的知识结构图小结等式的性质

作业设计:

PPT投影出课本第83页习题3.1第4题。

思考:

整个教学过程主要分两部分:第一部分是等式的性质,我采用体验探究的教学方式,首先由老师运用多媒体演示天平实验,分别在天平两侧放上砝码使天平保持平衡,并把实验转化为数学问题并列出数学式子;再让学生所列的式子,提出问题:通过天平实验所得到的式子你能联想到等式有什么性质?由学生独立思考归纳出等式的性质一和性质二,然后再把等式的性质抽象为数学的符号语言并表示出来。最后通过练习巩固等式的两条性质,并让学生从练习中思考运用等式的性质时应注意些什么?第二部分是对等式性质的运用。通过两个例题和两个练习,揭示等式性质的对称性和传递性,为后面学习一元一次方程和二元一次方程组作好了铺垫。

等式的性质教案五年级第 4 篇

教学目的

掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。

教学过程

师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?

第一组:1+2=3; a+b=b+a; S =ab; 4+x =7.

第二组:-7 < -5; 3+4 > 1+4; 2x ≤6, a+2 ≥0; 3≠4.

生:第一组都是等式,第二组都是不等式。

师:那么,什么叫做等式?什么叫做不等式?

生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。

师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。

前面我们学过了等式,同学们还记得等式的性质吗?

生:等式有这样的`性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。

师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。

练习1 (回答)用小于号“<”或大于号“>”填空。

(1)7 ___ 4; (2)- 2____6; (3)- 3_____ -2; (4)- 4_____-6

练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。

(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?

(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?

(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?

生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!

师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?

生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。

师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。

练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:

7>4;-2<6;-3<-2;-4>-6。

师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:

性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 。

(让同学回答。)

性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 。(让同学回答。)

性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向 。(让同学回答。)

现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。

不等式的这三条基本性质,都可以用数学语言表达出来,先请一位同学说一说第一条基本性质。

生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。

师:对a和b有什么要求吗?对c有什么要求?

生:没有什么要求。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号