当前位置:首页 > 教案教学设计 > 数学教案

不等式的倒数性质

日期:2022-02-17

这是不等式的倒数性质,是优秀的数学教案文章,供老师家长们参考学习。

不等式的倒数性质

不等式的倒数性质第 1 篇

不等式的倒数性质是如果x大于y大于0,那么x的n次幂大于y的n次幂且n为正数,x的n次幂小于y的n次幂,此时n为负数。

一、不等式的倒数性质

不等式就是用大于,小于,大于等于,小于等于连接而成的数学式子。

如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂

二、不等式的基本性质

如果x>y,那么yy;(对称性)

如果x>y,y>z;那么x>z;(传递性)

如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变。

如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变。

如果x>y,z<0,那么xz

如果x>y,m>n,那么x+m>y+n。

如果x>y>0,m>n>0,那么xm>yn。

三、不等式的特殊性质

不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;

不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;

不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。 总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。

不等式的倒数性质第 2 篇

  1.理解并掌握不等式的概念及性质;(重点)

  2.会用不等式表示简单问题的数量关系.(重点、难点)

  一、情境导入

  有一群猴子,一天结伴去摘桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每只猴子分5个,那么最后一只猴子分得的桃子不够5个.你知道有几只猴子,几个桃子吗?

  二、合作探究

  探究点一:不等式

  【类型一】 不等式的概念

  下列各式中:①-3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.不等式的个数有(

  )

  A.5个 B.4个 C.3个 D.1个

  解析:③是等式,④是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共4个.故选B.

  方法总结:本题考查不等式的判定,一般用不等号表示不相等关系的式子是不等式.解答此类题的关键是要识别常见不等号:>,<,≤,≥,≠.如果式子中没有这些不等号,就不是不等式.

  变式训练:见《学练优》本课时练习“课堂达标训练”第1题

  【类型二】 用不等式表示数量关系

  根据下列数量关系,列出不等式:

  (1)x与2的和是负数;

  (2)m与1的相反数的和是非负数;

  (3)a与-2的差不大于它的3倍;

  (4)a,b两数的平方和不小于它们的积的两倍.

  解析:(1)负数即小于0;(2)非负数即大于或等于0;(3)不大于就是小于或等于;(4)不小于就是大于或等于.

  解:(1)x+2<0;

  (2)m-1≥0;

  (3)a+2≤3a;

  (4)a2+b2≥2ab.

  变式训练:见《学练优》本课时练习“课堂达标训练”第5题

  【类型三】 实际问题中的不等式

  亮亮准备用自己节省的零花钱买一台学生平板电脑.他现在已存有55元,计划从现在起以后每个月节省20元,知道他至少需要350元,则可以用于计算所需要的月数x的不等式是(

  )

  A.20x-55≥350 B.20x+55≥350

  C.20x-55≤350 D.20x+55≤350

  解析:此题中的不等关系:现在已存有55元,计划从现在起以后每个月节省20元,知道他至少需要350元.列出不等式20x+55≥350.故选B.

  方法总结:用不等式表示实际问题中数量关系时,要找准题干中表示不等关系的两个量,并用代数式表示;正确理解题中的关键词,如大于、不大于、小于、不小于、不足、不超过、至少、至多等的含义.

  变式训练:见《学练优》本课时练习“课堂达标训练”第4题

  探究点二:不等式的性质

  【类型一】 比较代数式的大小

  根据不等式的性质,下列变形正确的是(

  )

  A.由a>b得ac2>bc2

  B.由ac2>bc2得a>b

  C.由-12a>2得a<2

  D.由2x+1>x得x<-1

  解析:A中a>b,c=0时,ac2=bc2,故A错误;B中不等式的两边都乘以或除以同一个正数,不等号的符号不改变,故B正确;C中不等式的两边都乘以或除以同一个负数,不等号的方向改变,右边也应乘以-2,故C错误;D中不等式的两边都加或减同一个整式,不等号的方向不变,故D错误.故选B.

  方法总结:本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.

  变式训练:见《学练优》本课时练习“课后巩固提升”第2题

  【类型二】 把不等式化成“x>a”或“x

  把下列不等式化成“x>a”或“x

  (1)2x-2<0;

  (2)3x-9<6x;

  (3)12x-2>32x-5.

  解析:根据不等式的基本性质,把含未知数项放到不等式的左边,常数项放到不等式的右边,然后把系数化为1.

  解:(1)根据不等式的基本性质1,两边都加上2得2x<2.根据不等式的基本性质2,两边除以2得x<1;

  (2)根据不等式的基本性质1,两边都加上9-6x得-3x<9.根据不等式的基本性质3,两边都除以-3得x>-3;

  (3)根据不等式的基本性质1,两边都加上2-32x得-x>-3.根据不等式的基本性质3,两边都除以-1得x<3.

  方法总结:运用不等式的基本性质进行变形,把不等式化成“x>a”或“x

  变式训练:见《学练优》本课时练习“课后巩固提升”第7题

  【类型三】 判断不等式变形是否正确

  如果不等式(a+1)x1,那么a必须满足________.

  解析:根据不等式的基本性质可判断,a+1为负数,即a+1<0,可得a<-1.

  方法总结:只有当不等式的两边都乘(或除以)一个负数时,不等号的方向才改变.

  变式训练:见《学练优》本课时练习“课后巩固提升”第5题

  三、板书设计

  1.不等式

  2.不等式的性质

  性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变;

  性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;

  性质3:不等式的两边都乘(或除以)同一个负数,不等号方向改变;

  性质4:如果a>b,那么b

  性质5:如果a>b,b>c,那么a>c.

  本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过,这些关键词中如果含有“不”“非”等文字,一般应包括“=”,这也是学生容易出错的地方。

不等式的倒数性质第 3 篇

知识点:

不等式的基本性质有对称性,传递性,加法单调性,即同向不等式可加性;乘法单调性;同向正值不等式可乘性;正值不等式可乘方;正值不等式可开方;倒数法则。

1不等式的基本性质

1.如果x>y,那么yy;(对称性)

2.如果x>y,y>z;那么x>z;(传递性)

3.如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;

4.如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;

5.如果x>y,z<0,那么xz

6.如果x>y,m>n,那么x+m>y+n;

7.如果x>y>0,m>n>0,那么xm>yn;

8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂

视频教学:

练习:

一、选择题

1.[2020·常州] 如果x,那么下列不等式正确的是 (

  )

A.2x<< span="">2y B.-2x<-< span="">2y

C.x-1>y-1 D.x+1>y+1

2.下列对不等式-3x>1的变形正确的是 (

  )

A.两边同除以-3,得x>-

B.两边同除以-3,得x<-< span="">

C.两边同除以-3,得x>-3 D.两边同除以-3,得x<-< span="">3

3.已知x,若ax>ay,则a应满足的条件是(

  )

A.a≥0 B.a≤0

C.a>0 D.a<< span="">0

二、填空题

4.用不等号填空,并说明根据的是不等式的哪一条基本性质:

(1)若x+2>5,则x

  

  3,根据不等式的基本性质

  

  ;

(2)若-

x<-< span="">1,则x

   

,根据不等式的基本性质

  

  .

5.(1)由mx>n,得x>

,则m

  

  0;

(2)由mx>n,得x<< span="">

,则m

  

  0.

6已知a<b,用“<”或“>”号填空:

(1)a-3___b-3; (2) 6a____6b;

(3) -a___-b; (4) a-b____0.

7用不等号填空,并说明是根据不等式的哪一条性质:

(1)若x-1>2,则x3,根据;

(2)若

<-2,则x

,根据;

(3)若

x<-3,则x

,根据.

8若(m-3)x<3-m可化为x>-1,则m.

课件:

不等式的倒数性质第 4 篇

  一、素质教育目标

  (一)知识教学点

  1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.

  2.灵活运用不等式的基本性质进行不等式形.

  (二)能力训练点

  培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.

  (三)德育渗透点

  培养学生积极主动的参与意识和勇敢尝试、探索的精神.

  (四)美育渗透点

  通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操,数学教案-不等式和它的基本性质 教学设计方案(二)。

  二、学法引导

  1.教学方法:观察法、探究法、尝试指导法、讨论法.

  2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.

  三、重点·难点·疑点及解决办法

  (一)重点

  掌握不等式的三条基本性质,尤其是不等式的基本性质3.

  (二)难点

  正确应用不等式的三条基本性质进行不等式变形.

  (三)疑点

  弄不清“不等号方向不变”与“所得结果仍是不等式”之间的`关系是学生学习的疑点.

  (四)解决办法

  讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.

  四、课时安排

  一课时

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.

  2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.

  3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.

  七、教学步骤

  (一)明确目标

  本节课主要学习不等式的三条基本性质并能熟练地加以应用.

  (二)整体感知

  通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.

  (三)教学过程

  1.创设情境,复习引入

  什么是等式?等式的基本性质是什么?

  学生活动:独立思考,指名回答.

  教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.

  请同学们继续观察习题:

  (1)用“>”或“<”填空.

  ①7+3____4+3 ②7+(-3)____4+(-3)

  ③7×3____4×3 ④7×(-3)____4×(-3)

  (2)上述不等式中哪题的不等号与7>4一致?

  学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.

  【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.

  不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.

  学生活动:观察思考,猜想出不等式的性质.

  教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”

  师生活动:师生共同叙述不等式的性质,同时教师板书.

  不等式基本性质1 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.

  对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?

  学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.

  【教法说明】观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?

  师生活动:由学生概括总结不等式的其他性质,同时教师板书.

  不等式基本性质2 不等式两边都乘(或除以)同一个正数,不等号的方向不变.

  不等式基本性质3 不等式两边都乘(或除以)同一个负数,不等号的方向改变.

  师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.

  学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.

  强调:要特别注意不等式基本性质3.

  实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.

  不等式的基本性质与等式的基本性质有哪些区别、联系?

  学生活动:思考、同桌讨论.

  归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.

  ①若 ,则 , ;

  ②若 ,且 ,则 , ;

  ③若 ,且 ,则 , .

  师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.

  注意:不等式除了上述性质外,还有以下性质:①若 ,则 .②若 ,且 ,则 ,这些先不要向学生说明.

  2.尝试反馈,巩固知识

  请学生先根据自己的理解,解答下面习题.

  例1 根据不等式的基本性质,把下列不等式化成 或 的形式.

  (1) (2) (3) (4)

  学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.

  教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.

  解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.

  所以

  (2)根据不等式基本性质1,两边都减去 ,得

  (3)根据不等式基本性质2,两边都乘以2,得

  (4)根据不等式基本性质3,两边都除以-4得

  【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与 或 对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.

  例2 设 ,用“<”或“>”填空.

  (1) (2) (3)

  学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.

  解:(1)因为 ,两边都减去3,由不等式性质1,得

  (2)因为 ,且2>0,由不等式性质2,得

  (3)因为 ,且-4<0,由不等式性质3,得

  教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.

  注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

  【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.

  3.变式训练,培养能力

  (1)用“>”或“<”在横线上填空,并在题后括号内填写理由.(不等式基本性质1,2,3分别用A、B、C表示.)

  ①∵ ∴ ( ) ②∵ ∴ ( )

  ③∵ ∴( ) ④∵ ∴( )

  ⑤∵ ∴ ⑥∵ ∴ ( )

  学生活动:此练习以学生抢答方式完成,目的是训练学生思维能力,表达能力,烘托学习气氛.

  答案:

  ① (A) ② (B)

  ③ (C) ④ (C)

  ⑤ (C) ⑥ (A)

  【教法说明】做此练习题时,应启发学生将所做习题与题中已知条件进行对比,观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.

  (2)单项选择:

  ①由 得到 的条件是( )

  A. B. C. D.

  ②由由 得到 的条件是( )

  A. B. C. D.

  ③由 得到 的条件是( )

  A. B. C. D. 是任意有理数

  ④若 ,则下列各式中错误的是( )

  A. B. C. D.

  师生活动:教师选出答案,学生判断正误并说明理由.

  答案:①A ②D ③C ④D

  (3)判断正误,正确的打“√”,错误的打“×”

  ①∵ ∴ ( ) ②∵ ∴ ( )

  ③∵ ∴ ( ) ④若,则 ∴,( )

  学生活动:一名学生说出答案,其他学生判断正误.

  答案:①√ ②× ③√ ④×

  【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.

  (四)总结、扩展

  1.本节重点:

  (1)掌握不等式的三条基本性质,尤其是性质3.

  (2)能正确应用性质对不等式进行变形.

  2.注意事项:

  (1)要反复对比不等式性质与等式性质的异同点.

  (2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.

  3.考点剖析:

  不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.

  八、布置作业

  (一)必做题:P61 A组4,5.

  (二)选做题:P62 B组1,2,3.

  参考答案

  (一)4.(1) (2) (3) (4)

  5.(1) (2) (3) (4)

  (5) (6)

  (二)1.(1) (2) (3)

  2.(1) (2) (3) (4)

  3.(1) (2) (3)

  九、板书设计

  6.1 不等式和它的基本性质(二)

  一、不等式的基本性质

  1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变.

  若 ,则 , .

  2.不等式两边都乘(或除以)同一个正数,不等号方向不变,若 , ,则 .

  3.不等式两边都乘(或除以)同一个负数,不等号方向改变,若 , ,则 .

  二、应用

  例1 解(1)(2)

  (3)(4)

  例2 解(1)(2)

  (3)

  三、小结

  注意不等式性质3的应用.

  四、背景知识与课外阅读

  盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的 ,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号