当前位置:首页 > 教案教学设计 > 数学教案

算数平方根教学资源

日期:2022-01-28

这是算数平方根教学资源,是优秀的数学教案文章,供老师家长们参考学习。

算数平方根教学资源

算数平方根教学资源第 1 篇

 学习目标:

《平方根》教案

  1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;

  2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。

  学习重点:

  了解平方根的概念,求某些非负数的平方根

  学习难点:

  了解被开方数的非负性;

  学习过程:

  一、 学习准备

  1、我们已经学习过哪些运算?它们中互为逆运算的是?

  答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。

  2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。

  32 = ( ) ( )2 = 9

  (—3)2= ( ) ( )2 =

  ( )2= ( ) ( )2 = 0

  ( )2 =( )

  02 =( ) ( )2 = —4

  3、左边算式已知底数、指数 求幂 ,右边算式已知幂、指数 求底数

  一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。

  即如果X2=a,那么 叫做 的平方根。请按照第3页的举例你再举两个例子说明:

  叫做开平方,平方与 互为逆运算

  4、观察上面两组算式,归纳一个数的平方根的性质是:

  一个正数 有两个平方根,它们互为相反数;

  零 有一个平方根,它是零本身;

  负数 没有平方根。

  交流:(1) 的平方根是什么?

  (2)0.16的平方根是什么?

  (3)0的平方根是什么?

  (4)—9的平方根是什么?

  5、平方根的表示方法

  一个正数a有两个平方根,它们互为相反数。

  正数a的正的平方根,记作

  正数a的`负的平方根,记作

  这两个平方根合在一起记作

  如果X2=a,那么X= ,其中符号 读作根号,a叫做被开方数

  这里的a表示什么样的数? a是非负数

  二、合作探究

  1、判断下面的说法是否正确:

  1)—5是25的平方根; ( )

  2)25的平方根是—5; ( )

  3)0的平方根是0 ( )

  4)1的平方根是1 ( )

  5)(—3)2的平方根是—3 ( )

  6) —32的平方根是—3 ( )

  2、阅读课本第4页例题1,按例题格式判断下列各数有没有平方根,若有,求其平方根。若没有,说明为什么。

  (1) 0.81 (2) (3) —100 (4) (—4)2

  (5)1.69 (6) (7) 10 (8) 5

  三、学习体会:

  本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?

  四、自我测试

  1、检验下面各题中前面的数是不是后面的数的平方根。

  (1)12 , 144 ( ) (2)0.2 , 0.04 ( )

  (3)102 ,104 ( ) (4)14 ,256 ( )

  2、选择题(1) 0.01的平方根是 ( )

  A、0.1 B、0.1 C、0.0001 D、0.0001

  (2)因为(0.3)2 = 0.09 所以( )

  A、0.09 是 0.3的平方根。 B、0.09是0.3的3倍。

  C、0.3 是0.09 的平方根。 D、0.3不是0.09的平方根。

  3、判断下列说法是否正确:

  (1)—9的平方根是—3; ( )

  (2)49的平方根是7 ; ( )

  (3)(—2)2的平方根是 ( )

  (4)—1 是 1的平方根; ( )

  (5)若X2 = 16 则X = 4 ( )

  (6)7的平方根是49。 ( )

  4、求下列各数的平方根

  1)81 2)0。25 3) 4)(—6)2

  5、求下列各式中的x:

  (1) x=16 (2) x= (3) x=15 (4) 4x=81

  思维拓展:

  1、一个数的平方等于它本身,这个数是 一个数的平方根等于它本身,这个数是

  2、若3a+1没有平方根,那么a一定 。 3、若4a+1的平方根是5,则a= 。

  4、一个数x的平方根等于m+1和m—3,则m= 。x= 。

  5、若|a—9|+(b—4)=0,则ab的平方根是 。

  6、熟背1至20的平方的结果。

  7、分别计算 32 ,34 ,46 ,58 ,512 ,10 的平方根,你能发现开平方后幂的指数有什么变化吗?

算数平方根教学资源第 2 篇

教学目标:

  【知识与技能】

  了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。

  【过程与方法】

  理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。

  【情感、态度与价值观】

  体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。

  【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。

  【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示。

  【教具准备】小黑板 科学计算器

  【教学过程】

  一、导入

  1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣。

  2、板书:实数 1.1 平方根

  二、新授

  (一)探求新知

  1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?

  2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。

  3、你还能举出哪些无理数?(,)、、1/3是无理数吗?

  4、有理数和无理数统称为实数。

  (二)知识归纳:

  1、板书:1.1平方根

  2、李老师家装修厨房,铺地砖10.8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)

  3、怎么算?每块地砖的面积是:10.8 120=0.09平方米。

  由于0.32=0.09,因此面积为0.09平方米的正方形,它的边长为0.3米。

  4、练习:

  由于( )=400,因此面积为400平方厘米的正方形,它的边长为( )厘米。

  5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。(也可叫做二次方根)

  例如22=4,因此2是4的一个平方根;62=36,因此6是36的一个平方根。

  6、说一说:9,16,25,49的一个平方根是多少?

  (三)探求新知:

  1、4的平方根除了2以外,还有别的数吗?

  2、学生探究:因为(-2)2=4,因此-2也是4的一个平方根。

  3、除了2和-2以外,4的平方根还有别的数吗?(4的平方根有且只有两个:2与-2。)

  4、结论:如果r是正数a的一个平方根,那么a的平方根有且只有两个:r与-r。

  5、我们把a的正平方根叫做a的算术平方根,记作,读作:“根号a”;

  把a的负平方根记作-。

  6、0的平方根有且只有一个:0。 0的平方根记作,即=0。

  7、负数没有平方根。

  8、求一个非负数的平方根,叫做开平方。

  (四)巩固练习:

  1、分别求下列各数的平方根:36,25/9,1.21。

  (6和-6,5/3和-5/3,1.1和-1.1)(也可用号表示)

  2、分别求下列各数的算术平方根:100,16/25,0.49。 (10,4/5,0.7)

  三、小结与提高:

  1、面积是196平方厘米的正方形,它的边长是多少厘米?

  2、求算术平方根:81,25/144,0.16

算数平方根教学资源第 3 篇

 教材分析:

  《算术平方根》是人教版七年级下第六章第一节,本节通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。通过对这一节课的学习,既可以让学生了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性,将为学生学习算术平方根奠定基础。引入算术平方根的知识,要借助具体的生活情境,这样才能加深对引入平方根知识必要性的认识。注意引导学生发现被开方数与对应的算术平方根之间的关系。

  本节课的开始就设置了一个问题情境,把这个问题情境抽象成数学问题就是已知正方形的面积求正方形的边长,这是典型的求算术平方根的问题。由于所选数字简单,可见其设计目的,并不着眼于计算,而在于巩固概念。因此本节课的关键是抓住算术平方根概念的本质特征,逐层深入,多个角度展示。

  课标要求:

  在实际情境中理解算术平方根的概念及求法,并能解决简单的问题,体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。

  本节突出概念形成过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。在本节课中,我利用学生的已有经验,通过思考、讨论、探究等活动,使学生感受到做数学、用数学的价值。

  策略分析:

  根据教材内容和编排特点,为了更有效地突出重点、突破难点、抓住关键,本节课按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的原则,采用“自主探究法”和“引导发现法”为主,并根据学法指导自主性和差异性要求,让学生在探究过程中理解理解算术平方根的概念。

  教学目标:

  1、经历算术平方根概念的形成过程,会用根号表示算术平方根,并了解算术平方根的非负性。

  2、会用平方运算求非负数的算术平方根,包括完全平方数的算术平方根和部分非完全平方数的.算术平方根。

  教学重点:

  理解算术平方根的概念。

  教学难点:

  根据算术平方根的概念正确求出非负数的算术平方根。

  教学过程:

  一、创设情境,导入新课

  学校要举行美术作品比赛,小鸥想裁出一块面积为25 dm2 的正方形油布,画上自己的得意之作参加比赛,这块正方形油布的边长应取多少?

  (设计说明:用教材的问题作为导入材料,能够和学生的课前预习活动对接,可以提高学生参与教学活动的广度,从学生熟悉的数学经验入手,提出简单的问题,激发学生自主学习的兴趣和积极性,也自然引入新课。)

  二、自主探究,发现新知

  自学教材40页内容,思考:

  1、什么是算术平方根?怎样表示一个数的算术平方根?

  2、1的算术平方根是多少?9的算术平方根是多少?16呢?怎样求一个正数的算术平方根?正数的算术平方根的结果是什么数?

  3、0的算术平方根是多少?为什么?

  4、负数有算术平方根吗?为什么?

  (师生活动:学生自学教材,结合探究提纲思考、练习、举例、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生中间交流,掌握学情,为展示交流做准备。)

  【设计意图】学生通过自主学习,经历观察、比较、抽象、概括的思维过程,理解算术平方根概念的实质,建立初步的数感和符号感,提高学生抽象思维水平。

  三、学生交流,展示归纳

  1、自主探究展示:

  (1)算术平方根的概念和表示方法。

  (2)求1,9,16,0的算术平方根。

  2、合作探究展示:

  负数没有算术平方根,因为没有任何数的平方的结果是负数。

  3、归纳展示:

  (1)一般地, 如果一个正数x的平方等于a,即 x2=a,那么这个正数x叫做a的算术平方根。记读作“根号a”,a叫做被开方数。

  (2)0的算术平方根是0。

  4、举例展示:(学生举出算术平方根的例子。)

  (师生活动:教师结合巡视检查,让中差生先展示,充分的暴露问题,再由中等生或优等生纠错、说理、补充、评价、修正。)

  【设计意图】通过展示交流,培养学生的“自主、合作、探究”能力,让学生体验“互逆”的数学思想方法,积累数学活动经验。

  四、类比练习,巩固提升

  (师生活动:学生结合例题的格式解答,抽3名学生上讲台板书,其他学生自主解答,从解题的过程、结果、格式等方面进行评价、纠错、修订、完善,教师给予适当的引导、点拨、评价。)

  练习1:课本41页练习1题。

  (师生活动:抽学生回答,其他同学评价、补充、修订。)

  练习2:课本41页练习2题。

  (师生活动:抽学生上黑板完成,发动学生相互评价补充,教师重点提醒题,强调乘方的算术平方根的计算方法。)

  练习3:下列各数有算术平方根吗?如果有,求出来;如果没有,请说明理由。

  (师生活动:学生独立解答,学生代表板书,学生相互评价,教师重点提醒题,加深对概念的理解和应用。)

  (师生活动:抽学生回答,发动其他同学评价、补充、修订。)

  【设计意图】学生通过口答、计算、选择,加深对算术平方根的概念及性质的理解和应用,提高学生分析问题和解决问题的能力。

  五、回顾反思,强化提升

  1、这节课你学到了什么?

  2、你对大家有哪些建议或提醒?

  (师生活动:学生自主小结,同学相互补充评价,教师补充完善。)

  【设计意图】引导学生从知识与技能、过程与方法、情感态度价值观的三维目标中总结自己的收获,把握本节课的核心内容,进一步体会互逆运算的数学思想方法。

  六、当堂检测、知识过关

  绩优学案32页巩固训练的1、2、3、4(1)(3)小题。

  (师生活动:学生独立完成,教师手拿红笔进行选择性批阅,教师出示答案,学生自我评价,师生共同评价。)

  【设计意图】通过4测试题,再次加深学生对算术平方根的概念的理解和运用,及时反馈学生对本节课知识的掌握程度。

  七、布置作业

  1、必做题:习题6.1复习巩固第1、2题。

  2、选做题:绩优学案32页典例探究3和巩固训练的5题。

  【设计意图】体现课标理念:“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。”必做题面向全体,选做题使学有余力的同学有发展的空间。

  【课后反思】

  本节课的教学设计,力求为学生创造一种宽松、和谐、适合学生发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。整个教学环节层层推进、步步深入,注重调动学生思维的积极性,把知识的形成过程转化为学生为主的过程,重视学生的自主探索、亲身实践、合作交流。学生在活动中理解掌握基本知识、技能和方法,使学生在获得知识的同时提高了兴趣、增强了信心、提高了能力。

  由于这节课是一节概念课,关于数学概念课的教学有它特殊的要求,其中,最重要的一点就是充分展现概念的形成过程,所以,如何引导帮助学生建立这个概念,并对它的内涵和外延有深刻、明确的理解和认识,是本节课的重点。本节课的内容看起来简单,但对学生来讲,要想真正理解这个概念有很多困难,如果仅仅就概念讲概念,如果没有必要的知识联系和迁移,学生对这个概念只能形式化的模仿运用,无法真正掌握。过去对这个问题重视不够,正是导致学生在这个简单的问题上经常犯错误的主要原因。为此,我在设计这节课教学时,把重点就放在这里。

  (1)创设情景,自然导入

  首先通过一个问题情境,引出面积求边长的问题,接着又让学生通过填表的方式,计算几个不同面积的正方形的边长,使学生感受到这些问题与以前学过的已知边长求面积的问题是一个相反的过程,即学生较为熟悉的互逆运算,并由此指出,这些问题抽象成数学问题就是已知一个正数的平方求这个正数的问题,并在此基础上给出算术平方根的概念,这样就让学生通过具体活动,在对算术平方根有些感性认识的基础上给出这个概念。培养学生从数学的角度观察生活,思考问题的能力。

  (2)学生在积极参与教学活动中自觉的提高了认知水平。

  算术平方根的学习体现了由特殊到一般的认识过程,通过一些具体数的计算,然后放到一般情况下理性思考,这样就为学生接受新知铺设了台阶,符合学生的认知规律。为了使抽象的概念具体化,通俗易懂,本节由学生列举的例子,培养学生的发散思维,也增强学生运用数学的意识。

算数平方根教学资源第 4 篇

教学目标

1.理解一个数的算术平方根的意义;

2.理解根号的意义,会用根号表示一个数的算术平方根;

3.通过本节的训练,提高学生的逻辑思维能力;

4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.

2学情分析

本节课内容的学习,是在学生已经掌握了乘方的基础上进行的,符合学生发展的认知规律。

3重点难点

教学重点:算术平方根的概念及求法.

教学难点:算术平方根概念的理解.

4教学过程 4.1第一学时 教学活动 活动1【导入】 (一)创设情境

  提出问题

学校要举行美术作品比赛,小欧很高兴.他想裁出一块面积为25dm 的

正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?

很容易,你一定会算出边长应取5dm.说一说,你是怎么算出来的?

因为5 =25,所以这个正方形画框的边长应取5dm..

大家思考一下,如果正方形的面积不是25dm ,而是1,9,16,36,4/25时,它的边长应该为多少

呢?

活动2【讲授】(二) 探究发现

观察上面的数有什么共同的特点:已知一个正数的平方,求这个正数.让同学回想一下,

以前求平方的过程,从1.读法;2.记法;3.表示方法三方面做对比.

已知: 1 9 16 36 4/25

↓ ↓ ↓ ↓ ↓

求: 1 3 4 6 2/5

通过比较,让同学试着自己给出算术平方根的定义:

一般地,如果一个正数x的平方等于a,即x =a,那么这个正数x叫做的a算术

平方根.a的算术平方根记为√a ,读作“根号a”,a叫做被开方数.

规定:0的算术平方根是0.

强调定义虽然简单,但是要求我们注意的问题很多.然后,边分析定义,边提出应该注意的五

个问题.

活动3【练习】(三) 变式内化 

1.下列式子表示什么意思?

2.练习:下列各式中哪些有意义?哪些无意义?为什么?

3.例题 求下列各数的算术平方根:

(1) 100; (2) 49∕64; (3) 0.0001.

4.填空题:

121的算术平方根是 —— ; 0.25的算术平方根是—— ;

0 的算术平方根是——; 100的算术平方根是—— ;

0.81的算术平方根是—— ;

上面4个题主要以学生做为主,教师针对学生的错误加以指导,训练学生对基本概念的掌握.

活动4【练习】(四) 应用提高 

2的算术平方根是( );

2是( )的算术平方根;

16的算术平方根是( );

√16 ̄的算术平方根( );

通过对相似数的比较,使学生强化定义. 另外,学生在完成此练习时,最容易出现的错误是 求根号16的算术平方根,指出这个实际上让我求4的算术平方根.

活动5【活动】(五) 总结拓展

你收获了什么?(幻灯片打出这个字幕).

由学生总结,教师整理.

数学和其它学科比较而言,是枯燥乏味的,针对这一问题,给同学出一个有趣的数学问

题,对这节课的内容加以拓展,另外,也可以激发学生学习数学的积极性.

观察数字宝塔,思考问题.

1×1﹦1

11×11﹦121

111×111﹦12321

1111×1111﹦1234321

11111×11111﹦123454321

111111×111111﹦12345654321

……….

猜想12345678987654321的算术平方根应为多少?

答案:111111111

让同学自己发现规律,解决问题.这一过程,可以让学生看到自己的进步,激励学生,使学生相信自己能在今后的学习中不断进步,促进学生形成良好的心理品质.

活动6【活动】(六) 激发悬念

在此以”你问 ,我答”的讨论形式,让学生自己发现问题.

活动7【作业】(七)作业

 教材P.75练习1、2.

6.1 平方根

课时设计 课堂实录

6.1 平方根

1第一学时 教学活动 活动1【导入】 (一)创设情境

  提出问题

学校要举行美术作品比赛,小欧很高兴.他想裁出一块面积为25dm 的

正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?

很容易,你一定会算出边长应取5dm.说一说,你是怎么算出来的?

因为5 =25,所以这个正方形画框的边长应取5dm..

大家思考一下,如果正方形的面积不是25dm ,而是1,9,16,36,4/25时,它的边长应该为多少

呢?

活动2【讲授】(二) 探究发现

观察上面的数有什么共同的特点:已知一个正数的平方,求这个正数.让同学回想一下,

以前求平方的过程,从1.读法;2.记法;3.表示方法三方面做对比.

已知: 1 9 16 36 4/25

↓ ↓ ↓ ↓ ↓

求: 1 3 4 6 2/5

通过比较,让同学试着自己给出算术平方根的定义:

一般地,如果一个正数x的平方等于a,即x =a,那么这个正数x叫做的a算术

平方根.a的算术平方根记为√a ,读作“根号a”,a叫做被开方数.

规定:0的算术平方根是0.

强调定义虽然简单,但是要求我们注意的问题很多.然后,边分析定义,边提出应该注意的五

个问题.

活动3【练习】(三) 变式内化 

1.下列式子表示什么意思?

2.练习:下列各式中哪些有意义?哪些无意义?为什么?

3.例题 求下列各数的算术平方根:

(1) 100; (2) 49∕64; (3) 0.0001.

4.填空题:

121的算术平方根是 —— ; 0.25的算术平方根是—— ;

0 的算术平方根是——; 100的算术平方根是—— ;

0.81的算术平方根是—— ;

上面4个题主要以学生做为主,教师针对学生的错误加以指导,训练学生对基本概念的掌握.

活动4【练习】(四) 应用提高 

2的算术平方根是( );

2是( )的算术平方根;

16的算术平方根是( );

√16 ̄的算术平方根( );

通过对相似数的比较,使学生强化定义. 另外,学生在完成此练习时,最容易出现的错误是 求根号16的算术平方根,指出这个实际上让我求4的算术平方根.

活动5【活动】(五) 总结拓展

你收获了什么?(幻灯片打出这个字幕).

由学生总结,教师整理.

数学和其它学科比较而言,是枯燥乏味的,针对这一问题,给同学出一个有趣的数学问

题,对这节课的内容加以拓展,另外,也可以激发学生学习数学的积极性.

观察数字宝塔,思考问题.

1×1﹦1

11×11﹦121

111×111﹦12321

1111×1111﹦1234321

11111×11111﹦123454321

111111×111111﹦12345654321

……….

猜想12345678987654321的算术平方根应为多少?

答案:111111111

让同学自己发现规律,解决问题.这一过程,可以让学生看到自己的进步,激励学生,使学生相信自己能在今后的学习中不断进步,促进学生形成良好的心理品质.

活动6【活动】(六) 激发悬念

在此以”你问 ,我答”的讨论形式,让学生自己发现问题.

活动7【作业】(七)作业

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号