当前位置:首页 > 教案教学设计 > 数学教案

等式的性质和解方程教案

日期:2022-01-25

这是等式的性质和解方程教案,是优秀的数学教案文章,供老师家长们参考学习。

等式的性质和解方程教案

等式的性质和解方程教案第 1 篇

教学目标:

  1、学会利用等式性质1解方程;

  2、理解移项的概念;

  3、学会移项、

  教学重点:利用等式性质1解方程及移项法则;

  教学难点:利用等式性质1来解释方程的变形、

  教学方法:引导发现

  教学过程:

  一、引入新课:

  1、上节课的想一想引入新课:等式和方程之间有什么区别和联系?

  方程是等式,但必须含有未知数;

  等式不一定含有未知数,它不一定是方程、

  2、下面的一些式子是否为方程?这些方程又有何特点?

  ①5x+6=9x;②3x+5;③7+5×3=22;④4x+3y=2、

  由学生小议后回答:①、④是方程、

  分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数、

  我们先来研究最简单的(只含有一个未知数的)的一元一次方程、

  3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程、

  注意:一次方程可以含有两个或两个以上的未知数:如上例的④、

  4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程、

  5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)

  ①2x+3=11;②y=16;③x+y=2;④3y-1=4y、

  6、什么叫方程的解?怎样解方程?

  关键是把方程进行变形为x=?即求得方程的解、今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

  二、讲解新课:

  1、等式性质1:

  出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形、

  强调关键词:“两边”、“都”、“同”、“等式”、

  2、利用等式性质1解方程:x+2=5

  分析:要把原方程变形成x=?只要把方程两边同时减去2即可、

  注意:解题格式、

  例1 解方程5x=7+4x

  分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x、

  (解略)

  解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

  只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验) 2

  观察前面两个方程的求解过程:

  x+2=5

  x=5-2 5x=7+4x 5x-4x=7

  思考:(1)把+2从方程的一边移到另一边,发生了什么变化?

  (2)把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)

  3、移项:

  从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项、

  注意:①移项要变号;

  ②移项的实质:利用等式性质1对方程进行变形。

  例2 解方程:3x+4=2x+7

  解:移项,得3x-2x=7-4,

  合并同类项,得x=3.

  ∴x=3是原方程的解、

  归纳:①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

  ②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;

  ③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)、

  四、课堂小结:

  ①什么是一次方程,一元一次方程?

  ②等式性质1(找关键词);

  ③移项法则;

  ④应用等式性质1的注意点(例2归纳的三条)、

  六、板书设计

  七、教学后记

等式的性质和解方程教案第 2 篇

教学目标:

  1、通过演示操作理解天平平衡的原理。

  2、初步理解方程的解和解方程的含义。

  3、会检验一个具体的值是不是方程的解,掌握检验的格式。

  4、、提高学生的比较、分析的能力;培养学生的合作交流的意识。

  教学重点:理解方程的解和解方程的含义,会检验方程的解。

  教学难点:利用天平平衡的原理来检验方程的解。

  关键:天平与方程的联系。

  教具 : 图片,课件

  教学过程:

  一、 回顾旧知,引出课题(出示课件)

  1、实物演示:天平平衡的实验。

  师:老师在天平的左边放了一杯水,杯重100克,水重X克,一杯水重多少?

  生:(100+X)克

  师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

  师:请你根据图意列一个方程。

  生:100+X=250(课件显示:100+X=250)

  2、这个方程怎么解呢?就是我们今天要学习的内容——解方程。(板书课题:解方程)

  二、探究新知

  1、认识“方程的解”和“解方程”的两个概念

  师:(出示课件)那你猜一猜这个方程X的值是多少?并说出理由。

  生1:我有办法,可以用250-100=150,所以X=150.

  生2:我有办法,因为100+150=250,所以X=150

  生3: 老师我也有办法,我是这样想的,假如方程的两边同时减去100,就能得出X=150

  师:XXX同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩X克水,而天平保持平衡。

  生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。

  师:你能根据操作过程说出等式吗?

  生:100+X-100=250-100

  师:这时天平表示未知数X的值是多少?

  生:X=150

  师:是的,XXX同学的想法是正确的,方程左右两边同时减100,就能得出X=150。我们表扬他。

  师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

  师:指着方程100+X=250说:“X=150是这个方程的解。(课件显示:方程的解)

  师:

  100+X=250

  100+X-100=250-100

  指着方框说:“这是求方程的解的过程,叫解方程。

  师:在解方程的开头写上“解:”,表示解方程的全过程。

  师:同时还要注意“=”对齐。

  师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。

  师:你们怎么理解这两个概念的?

  (学生独立思考,再在小组内交流。)

  师:谁来说说你想法?

  生1:“解方程”是指演算过程

  生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。

  师:“方程的解”和“解方程”的两个解有什么不同?

  生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。

  [设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]

  2、教学例1。

  师:要是老师出一个方程,你会求这个方程的解吗?

  生:会。

  师:请自学第58页的例1的有关内容。

  [学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]

  师:四人小组讨论方程左右两边为什么同时减3?

  [学生独立思考,再在小组内交流。]

  师:(出示例1)左边有X个,右边有3个,一共用9个。根据图意列一个方程。

  生:X+3=9(板书:X+3=9)

  师:X+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。

  师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩X,而天平保持平衡。

  生:天平左右两边同时拿走3个方块,使天平左边只剩X,天平保持平衡。师:根据操作过程说出等式?

  生:X+3-3=9-3(板书:X+3-3=9-3)

  师:这时天平表示X的值是多少?

  生:X=6(板书:X=6)

  师:方程左右两边为什么同时减3?

  生1:使方程左右两边只剩X。

  生2:方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。

  师:“方程左右两边同时减3,使方程左边只剩X,方程左右两边相等。”就是解这个方程的方法。

  师:这个方程会解。我们怎么知道X=6一定是这个方程的解呢?

  生:验算。

  师:对了,验算方法是什么?

  生:将X=6代入原方程,看方程的左边是否等于方程的右边。

  (板书:

  验算:方程的左边=6+3=9

  方程的右边=9

  方程的左边=方程的右边

  所以,X=6是方程的解。)

  师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的.,要进行口头检验,要养成口头检验的习惯。力求计算准确。

  [设计的意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]

  三、巩固练习

  师:现在老师看看同学们对于解方程掌握得怎么样。(课件展示)。

  四、课堂小结:解含有加法方程的步骤。(出示课件)

  师:谁能说说解含有加法和减法的方程的步骤?(随着学生,显示全过程。)

  生:解方程的步骤:

  a)先写“解:”。

  b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。

  c)求出X的值。

  d)验算。

等式的性质和解方程教案第 3 篇

教学目标:

  知识目标:

  1、通过演示操作理解天平平衡的原理。

  2、初步理解方程的解和解方程的含义。

  3、会检验一个具体的值是不是方程的解,掌握检验的格式。

  能力目标:

  1、提高学生的比较、分析的能力;

  2、培养学生的合作交流的意识。

  情感目标:

  1、感受方程与现实生活的联系。

  2、愿意与别人合作交流。

  教学重点:

  理解方程的解和解方程的含义,会检验方程的解。

  教学难点:

  利用天平平衡的原理来检验方程的解。

  关键:

  天平与方程的联系。

  教具 :

  课件

  教学过程:

  一、游戏铺垫,引出课题(出示课件)

  师:明明周末在超市玩起了称糖果的称,我们一起合作使称保持平衡!

  师:同学们反映真敏捷,能通过观察马上想出使天平保持平衡的策略。

  生:从中你有什么想说的?或者你联想到了什么?

  生:只要两边都拿掉或增加相同数量的糖果,就能保持平衡;让我想到了等式的性质(全班一起口答:等式两边加上或减去同一个数,左右两边任然相等;等式两边乘同一个数,或除以同一个部位0的数,左右两边任然相等)(板书“等式性质”)

  师过渡:是的,知识就是这样被有心人所发现的。

  二、探究新知

  师:这里有个纸箱里面装着一些足球,你猜会有几个呢?(课件逐步出示)

  再给你点信息,这幅图谁能用一个方程来表示。

  生列方程,并说说你是怎么想的。

  1、解方程

  师:在这个方程中,x的值是多少呢?(学生思考,小范围交流)

  汇报预设:①因为9-3=6②因为6+3=9所以x的值为6 所以x的值为6 (多少)

  师引导:当然,我知道这么简单的问题是难不住大家的,但是我们的思考不能停止,从今天开始我们将学习怎样利用天平保持平衡的原理来寻求x的值,这种思考的方法到初中遇上更加复杂的方程时仍然会用到。

  师:现在我们就将X+3=9这个方程转换到天平上来?(黑板贴图)

  师:球在天平不好摆,我们可以用方块来代替它。

  自主尝试:看着天平,如何去寻求x的值?

  请用笔记录下你的想法。

  组织好语言上台汇报你的想法。

  教师统一书写:

  师介绍:求解x的过程我们在最前面写“解”字。(板书写“解”字)

  追问:两边都拿掉3个,天平还能平衡吗,两边还相等吗?(贴图展示)

  为什么要减3个?(可以方程的一边只剩x,就可以知道x=?)(再叫2-3个)

  生活动:我们看着板书来说说是怎么成功得到x的值,每一步的依据是什么。(2-3个)

  你学会了吗?赶紧和你的同桌说一说方法。

  2、强调格式:

  师:这个求解的过程和以前递等式有什么区别或相同的地方?

  生:等号对齐;等号两边都要写;最前面要写解字

  3、练习一:

  师:按照大家借助天平运用等式性质的想法,就是说当我们遇到方程33+x=65你也能求解? 解:33+x○( )=65○( )

  x=( ) 那么x-4.5=10 呢?(学生独立尝试,一个学生板演)

  生完成填空和独立节解方程。(课件中校对)

  4、介绍概念:像这些(课件中圈出来),使方程左右两边相等的未知数的值,

  叫“方程的解”;举例:x=3是方程x+3=9的解??

  而求方程的解的过程,我们叫“解方程”(板书)

  这些知识在数中有介绍,我们找到划一划读一

小学解方程教学设计

  2、 利用等式性质1解方程:

  x+2=5

  分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

  注意: 解题格式。

  例1 解方程5x=7+4x

  分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x,初中数学教案《数学教案-解方程》。

  (解略)

  解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

  只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)

  观察前面两个方程的求解过程:

  x+2=5 5x=7+4x

  x=5-2 5x-4x=7

  思考:⑴把+2从方程的一边移到另一边,发生了什么变化?

  ⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)

  3、 移项:

  从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。

  注意:①移项要变号;

  ②移项的实质:利用等式性质1对方程进行变形。

  例2 解方程:3x+4=2x+7

  解:移项,得3x-2x=7-4,

  合并同类项,得x=3。

  ∴x=3是原方程的解。

  归纳:①格式:解方程时一般把含未知数的项移到方程的.左边,把常数项移到方程的右边,以便合并同类项;

  ②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;

  ③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。

  练习:书本105页 1(口答),2(板演),想一想。

  (三)、课堂小结:

  ①什么是一次方程,一元一次方程?

  ②等式性质1(找关键词);

  ③移项法则;

  ④应用等式性质1的注意点(例2归纳的三条)。

  (四)、布置作业:见作业本。

等式的性质和解方程教案第 4 篇

教学目标:

  1、经历解方程基本思路是把“复杂”转化为“简单”,把“新”转化为“旧”的过程、进一步理解并掌握如何去分母的解题方法、

  2、通过解方程时去分母过程,体会转化思想、

  3、进一步体会解方程方法的灵活多样、培养解决不同问题的能力、

  4、培养学生自觉反思求解和自觉检验方程的解是否正确的良好习惯,团结合作的精神、 教学重点:解方程时如何去分母、

  教学难点:解方程时如何去分母、

  教学方法:引导发现

  教学设计:

  一、用小黑板出示一组解方程的练习题。

  解方程:

  (1)8=7-2y;

  (3)4x-3(20-x)=3;

  1、自主完成解题。

  2、同桌互批。

  3、哪组同学全对人数多。

  (根据学生做题情况,教师给予评价)。

  二、出示例题7,鼓励学生到黑板板演,教师给予评价、。

  一名同学板演,其余同学在练习本上做。

  针对学生的实际,教师有目的引导学生如何去掉分母、去分母时要引导学生规范步骤,准确运算。

  三、组织学生做教材159页“想一想”,鼓励并引导学生总结解一元一次方程有哪些步骤、 分组讨论、合作交流得出结论:方程两边都乘以所有分母的最小公倍数去掉分母、

  四、出示例题6,并鼓励学生灵活运用解一元一次方程的步骤解方程。

  出示快速抢答题:有几处错误,请把它们—一找出来并改正。

  ①先自己总结、

  ②互相交流自己的结论,并用语言表述出来、

  教师给予评价、

  引导学生总结本节的学习内容及方法。

  五、出示随堂练习题(根据学生情况做部分题或全部题)。

  ①自主完成解方程

  ②互相交流自己的结论,并用语言表述出来。

  ③自觉检验方程的解是否正确。

  (选代表到黑板板演)。

  ①学生抢答。

  ②同组补充不完整的地方。

  ③交流总结方程变形时容易出现的错误。

  ①独立完成解方程。

  ②小组互评,评出做得好的同学。

  六、小结

  ①做出本节课小结共交流、

  (2)5x-2=7x+8; (4)-2(x-2)=12

  ②说出自己的收获及最困惑的地方

  八、板书设计

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号