日期:2022-02-18
这是运算定律教学案例优质课分析,是优秀的数学教案文章,供老师家长们参考学习。
教学目标
1、引导学生探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行
一些简便运算。
2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3、感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教材简析
1、有关运算定律的知识相对集中,有利于学生形成比较完整的认知结构。
2、从现实的问题情境中抽象概括出运算定律,便于学生理解和应用。
3、重视简便计算在现实生活中的灵活应用,有利于提高学生解决实际问题的能力。
教学重点:探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算
教学难点:探索和理解加法的乘法的运算定律,会应用它们进行一些简便运算
教学策略
1、充分利用学生已有的感性认识,促进学习的迁移。
2、加强数学与现实世界的联系,促进知识的理解与应用。
3、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。
一、教学内容:加法运算定律的应用P20——P21
二、教学目标:
1、知道简便运算的基本思想方法是凑整,利用加法运算定律可使运算简便;会正确运用加法运算律,对某些算式进行简便计算。
2、在学习过程中进一步体验数学与生活的联系,感受简便计算的乐趣,培养学习数学的积极情感。
三、教学重难点:
重点:理解并掌握运用加法运算定律进行简便计算。
难点:能正确迅速找出凑成整十、整百或整千数的两个加数。
四、教学准备
实物投影、课件。
五、教学过程
(一)导入新授
1、根据运算定律,在 上填上合适的数或字母。
(a+b)+ = +(b+c)
125+38+75=(125+ )+38
2、计算并验算。
480+547 456+358 789+457
利用加法交换律,我们可以进行加法的验算。在计算过程中,这两个运算律还可以使计算简便。这节课我们就来学习这部分知识。板书课题:加法运算定律的应用。
(二)探索发现
1、出示教材第20页例3情境图。
创设情境:回顾李叔叔骑车旅行一事,得知李叔叔后四天将继续行驶并计划好了骑车的行程。
李叔叔是如何安排后四天的行程计划的?按照计划李叔叔后四天还要骑多少千米?你会计算吗?
2、解决问题。
教师出示问题:按照计划,李叔叔后四天还要骑多少千米?
学生独立解答。
根据学生回答板书:115+132+118+85。
3、组织交流。
交流各自的算法,全班汇报。
汇报预设:
方法一:
115+132+118+85
=247+118+85
=365+85
=450(千米)
方法二:
115+132+118+85
=115+85+132+118
=(115+85)+(132+118)
=200+250
=450(千米)
4、比较算法。
比较一下哪种算法更简便,你是怎么想的,运用了哪些运算定律?(学生通过比较发现:运用加法交换律、结合律改变其运算顺序,可以使计算更为简便)
教师强调:在计算时,应先观察题目,分析是否能够应用运算律使计算简便。
学生小结:把能凑成整十、整百的数结合起来先算,可使运算简便。(板书:关键:“凑整” 方法:“用运算律”)
5.基本运用。
用简便方法计算。
718+57+82 57+62+138
(1)学生独立完成,并说说为什么这样计算。
(2)师生共同归纳方法:碰到一个加法算式,先看有没有能“凑整”的数,如有,再运用加法运算律进行简便计算。
①观察有没有能凑整的数。
②如无,按顺序计算或竖式计算;如有,用加法运算律计算。
6、凑整训练。
把左边和右边的数相加的和是整百、整千的用线连起来。
36 283
1597 253
47 164
317 403
决定是否运用运算律,关键看题中有没有可凑整的数。因此要正确迅速地做出决定,必须加快我们分辨凑整数的速度。
(三)检测评价
1、完成教材第20页“做一做”。
学生独立完成,小组交流,集体订正。交流时让学生说清楚应用了什么运算律。
2、用简便方法计算下列各题。
60+145+40+355 372+42+258 146+143+54+257
(四)评价反馈
这节课你学到了什么?如何应用加法运算定律使计算简便?
让学生互相补充,充分发表自己的想法。明确只要把能凑成整十、整百或整千的数结合起来先算,就可使运算简便。
(五)板书设计
加法运算定律的应用
例3:按照计划,李叔叔后四天还要骑多少千米?
115+132+118+85
=115+85+132+118 加法交换律
=(115+85)+(132+118) 加法结合律
=200+250
=450(千米)
关键:“凑整” 方法:“用运算律”
在计算加法时,运用加法运算定律,可以使计算简便。
六、教学后记
一、教学内容:加法运算定律的应用P20——P21
二、教学目标:
1、理解并掌握从一个数里连续减去两个数的几种常用算法,并能根据具体情况选择合适的方法进行简便计算。
2、培养根据实际情况灵活选择算法进行计算的意识与能力,提高观察比较能力和思维的灵活性。
3、通过课堂活动,激发学习兴趣,感受数学与现实生活的联系,学会用所学知识解决简单的实际问题。
三、教学重难点:
重点:理解并掌握从一个数里连续减去两个数的几种常用算法,并运用其进行简便计算。
难点:学会根据实际情况灵活选择算法进行简便计算。
四、教学准备
实物投影、课件。
五、教学过程
(一)导入新授
同学们,上课之前我们先来玩一个凑数游戏。
师:我先说一个数,你们再说一个数,你们说的数与我说的数的和或差是整百数。
师生游戏。
同学们玩得真棒!凑整是简便计算中比较常用的方法,今天我们继续学习简便计算。
板书课题:连减的简便计算。
(二)探索发现
1、课件出示教材第21页例4情境图。
提问:你能从图中获得哪些信息?
数学信息:李叔叔昨天看到第66页,今天又看了34页,这本书一共有234页。
想一想:怎样计算还剩多少页没有看?(用减法)
2、列式计算。
组织学生独立思考,引导学生列出算式,并在小组内交流各自的算法。
3、汇报展示。
指名汇报,说说自己是如何计算的。
汇报预设:
方法一:先用总页数减去昨天看的66页,再减去今天看的34页,最后算出还剩多少页没看:
234-66-34
=168-34
=134(页)
方法二:先算出李叔叔昨天和今天一共看了多少页,然后从总页数里减去看过的页数,最后算出还剩多少页没看:
234-66-34
=234-(66+34)
=234-100
=134(页)
方法三:先用总页数减去今天看的34页,再减去昨天看的66页,最后算出
还剩多少页没看:
234-66-34
=234-34-66
=200-66
=134(页)
4、拓展提高。
提出问题:你最喜欢用哪种方法进行计算?为什么?234-66-34与234- (66+34)哪种计算方法更简便?
让学生分别说说自己的理由。
师:如果我把234改成266,想一想,这个时候选择哪一种方法计算更简便?为什么?
组织学生自由讨论,发表各自的意见。
5、发现、总结规律。
(1)发现规律。
师:你能像上面这样举出连减的例子吗?
学生举例,如:251-30-70=251-(30+70)或154-68-54=154-54-68。
(2)总结规律。
①交流讨沦:通过刚才这道题可以看出,在计算连减时有多种方法,在小组内交流一下,在计算连减时怎样可以使计算更简便。
②总结:可以从左往右按顺序计算;也可以把减数加起来,再从被减数里去减;还可以先减去后面的减数,再减去前面的。我们要根据数字的特点,选择合适的算法,进行简便计算。
③用字母该如何表示呢?
交流后出示:a-b-c=a-(b+c)。
6、即时练习。
完成教材第21页“做一做”。
先让学生独立完成,集体订正时,让学生说一说自己是如何进行简便计算的。
(三)检测评价
1、在○里和横线上填上适当的运算符号或数字。
146-55-45=146○(45○45)
☆-※-△=☆○(※○△)
624-172-328= ○( ○ )
a-b-c=a○( ○ )
213-○-○= ○(68○32)
2、想一想,不改变运算顺序,谁会计算得快一些?
(1)126-48-52 126-(48+52)
(2)364-(153+47) 364-153-47
(3)685-(228+272) 685-228-272
(四)评价反馈
通过今天这节课的学习,你有什么新收获?
师生交流后总结:学习了减法的简便计算,知道了在减法里,一个数里连续减去两个数,等于这个数减去后两个数的和。
(五)板书设计
连减的简便计算
例1:李叔叔昨天看到第66页,今天又看了34页,这本书一共有234页。还剩多少页没有看?
方法一: 方法二: 方法三:
234-66-34 234-66-34 234-66-34
=168-34 =234-(66+34) =234-34-66
=134(页) =234-100 =200-66
=134(页) =134(页)
在减法里:一个数里连续减去两个数,等于这个数减去两个数的和。
用字母表示为:a-b-c=a-(b+c)
六、教学后记
第1课时 加法交换律和结合律
一、教学内容:加法交换律和结合律P17——P18
二、教学目标:
1、在解决实际问题的过程中,发现并掌握加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展分析、比较、抽象、概括能力,培养学生的符号感。
3、培养学生的观察能力和概括能力。
三、教学重难点
重点:发现并掌握加法交换律、结合律。
难点:由具体上升到抽象,概括出加法交换律和加法结合律。
四、教学准备
多媒体课件
五、教学过程
(一)导入新授
1、出示教材第17页情境图。
师:在我们班里,有多少同学会骑自行车?你最远骑到什么地方?
师生交流后,课件出示李叔叔骑车旅行的场景:骑车是一项有益健康的运动,你看,这位李叔叔正在骑车旅行呢!
2、获取信息。
师:从中你知道了哪些数学信息?(学生回答)
3、师小结信息,引出课题:加法交换律和结合律。
(二)探索发现
第一环节 探索加法交换律
1、课件继续出示:“李叔叔今天上午骑了40km,下午骑了56km,一共骑了多少千米?”
学生口头列式,教师板书出示: 40+56=96(千米) 56+40=96(千米)
你能用等号把这两道算式写成一个等式吗? 40+56=56+40
你还能再写出几个这样的等式吗?
学生独自写出几个这样的等式,并在小组内交流各自写出的等式,互相检验写出的等式是否符合要求。
2、观察写出的这些算式,你有什么发现?并用自己喜欢的方式表示出来。
全班交流。从这些算式可以发现:两个数相加,交换加数的位置,和不变。
可以用符号来表示:△+☆=☆+△;
可以用文字来表示:甲数十乙数=乙数十甲数。
3、如果用字母a、b分别表示两个加数,又可以怎样来表示发现的这个规律呢?
a+b=b+a
教师指出:这就是加法交换律。
4、初步应用:在( )里填上合适的数。
37+36=36+( ) 305+49=( )+305 b+100=( )+b
47+( )=126+( ) m+( )=n+( ) 13+24=( )+( )第二环节 探索加法结合律
1、课件出示教材第18页例2情境图。
师:从例2的情境图中,你获得了哪些信息?
师生交流后提出问题:要求“李叔叔三天一共骑了多少千米”可以怎样列式?
学生独立列式,指名汇报。
汇报预设:
方法一:先算出“第一天和第二天共骑了多少千米”:
(88+104)+96
=192+96
=288(千米)
方法二:先算出“第二天和第三天共骑了多少千米”:
88+(104+96)
=88+200
=288(千米)
把这两道算式写成一道等式:
(88+104)+96=88+(104+96)
2、算一算,下面的○里能填上等号吗?
(45+25)+13○45+(25+13) (36+18)+22○36+(18+22)
小组讨论。先比较每组的两个算式,再比较这三组算式,在小组里说说你有什么发现。
集体交流,使学生明确:三个算式加数没变,加数的位置也没变,运算的顺序变了,它们的和不变。也就是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
3、如果用字母a、b、c分别表示三个加数,可以怎样用字母来表示这个规律呢?
(a+b)+c=a+(b+c)
教师指出:这就是加法结合律。
4、初步应用。
在横线上填上合适的数。
(45+36)+64=45+(36+ )
(560+ )+ =560+(140+70)
(360+ )+108=360+(92+ )
(57+c)+d=57+( + )
(三)巩固发散
1、完成教材第18页“做一做”。
学生独立填写,组织汇报时,让学生说说是根据什么运算律填写的。
2、下面各等式哪些符合加法交换律,哪些符合加法结合律?
(1)470+320=320+470
(2)a+55+45=55+45+a
(3)(27+65)+35=27+(65+35)
(4)70+80+40=70+40+80
(5)60+(a+50)=(60+a)+50
(6)b+900=900+b
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:学习了加法交换律和结合律,并知道了如何用符号和字母来表示发现的规律。
(五)板书设计
加法交换律和结合律
加法交换律 加法结合律
例1:李叔叔今天一共骑了多少千米? 例2:李叔叔三天一共骑了多少千米?
40+56=96(千米) (88+104) +96 88+(104+96)
56+40=96(千米) =192+96 =88+200
=288(千米) =288(千米)
40+56=56+40 (88+104)+96=88+(104+96)
a+b=b+a (a+b)+c=a+(b+c)
两个数相加,交换加数的位置,和不变。 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
六、教学后记
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号