当前位置:首页 > 教案教学设计 > 数学教案

鸽巢问题教学反思

日期:2021-04-27

这是鸽巢问题教学反思,是优秀的数学教案文章,供老师家长们参考学习。

鸽巢问题教学反思

鸽巢问题教学反思第1篇

鸽巢原理是一个重要而又基本的数学原理,通过本课教学向学生介绍抽屉原理的由来,并通过对一些简单实际问题进行模型化地研究,使学生理解抽屉原理。掌握一些研究问题的方法,达到会证明生活中的某些现象,会解决生活中的某些问题的目的。 本课教学时主要分以下几个层次:

一、创设情境,巧设悬念

通过猜月份相同这个情境引入,一是使教师和学生进行自然的沟通交流;二是调动和激发学生学习的主动性和探究欲望;三是为今天的探究埋下伏笔,初步理解“至少”的含义。

二、合作探究,建立模型

引导学生从简单的情况开始研究,渗透“建模”思想。通过学生独立证明、小组交流、汇报展示,使学生相互学习解决问题的不同方法。通过说理,沟通比较不同的方法,让学生理解:为什么只研究一种方法(平均分的思路)就能断定一定有“至少2只笔放进同一个笔筒中”这个过程主要解决对“至少”、“总有”“平均分”这些词的理解。再通过摆或假设法继续发现规律,在这个过程中抽象出算式,并在观察比较中全面概括、总结抽屉原理,建立起此类问题的模型。

三、鸽巢原理的由来

数学小知识鸽巢原理、抽屉原理的由来,采用了微课的方式呈现,向学生介绍了德国数学家——“狄里克雷”和他的“抽屉原理”。使学生感受到我们本课所发现的规律和150多年前科学家发现的一模一样,增加探究的成就感。同时了解到鸽巢原理最初的模型和在生活中的广泛应用,增加一些数学文化气息。

四、解决问题

通过举例、解决问题,开阔学生视野,回归课前,回归生活,通过不同类型题的设计,让学生灵活运用此原理解释生活现象。

鸽巢问题教学反思第2篇

  一堂好的数学课,我认为应该是原生态,充满“数学味”的课。本节课我让学生经历了探究“鸽巢问题”的过程,初步了解了“鸽巢问题”,并能够应用与实际。

  一、情境导入,初步感知

  兴趣是最好的老师,在导入新课时,我以4人的抢凳子游戏,初步感受至少有两位同学相同的现象,抓住学生注意力。

  二、教学时以学生为主体,以学定教

  由于课前让学生做了预习,所以在课上我并没有“满堂灌”,而是先了解学生的已知和未知点,让预习程度好的同学来试着解决其他同学提出的问题,再师生质疑,完成对新知的传授。这样既培养了学生预习的习惯,又能让学生找到知识的盲点,从而对本节课感兴趣,同时又锻炼了学生的语言表达能力。

  三、通过练习,解释应用

  适当设计形式多样的练习,可以引起并保持学生的学习兴趣。如,扑克牌的游戏,学生们非常感兴趣,达到了预期的效果。

  不足:

  1、学生们语言表达能力还有待提高。

  2、课堂中教师与速较快。

鸽巢问题教学反思第3篇

  鸽巢问题是我们数学中比较有意思且在生活中运用比较广泛的问题。因此,在录制一师一优课时我想到了给学生讲这一节课,使学生更加清楚的认识到数学是源于生活,并运用于生活中的。

  鸽巢问题又可以叫做抽屉原理,是一种在生活中常见的数学原理,许多游戏的设置都运用了该原理,例如抢凳子游戏,纸牌游戏等。因此,在讲课开始我先用纸牌游戏中引出今天的鸽巢问题,让学生带着好奇心来学习本节课内容。接着我出示例题,先找一位同学演示3支笔放进2个笔筒中应该怎么放,并记录下来,使学生明白小组应该怎样进行活动并记录。接着出示课本例1的题目,学生小组内通过刚才的方法很轻易的就找出一共有几种方法,在找一位学生进行演示加强大家的认识。我有介绍了刚才学生们实验的方法叫做枚举法。并通过观察引出概念总有一个笔筒里至少有2支铅笔。接着让学生们转换思想求实有没有更简单的方法得出结论,学生通过实验和讨论得出可以用平均分的方法得到同样的结论。并把其转化为算式。

  接着增加铅笔和笔筒的个数仍能得到相同的结论,由此学生发现当铅笔数比笔筒数多1时,总有一个笔筒至少有2支铅笔的结论。把铅笔和笔筒换成其他物品学生还能相似的结论,说明学生已经可以学移致用了。之后介绍鸽巢问题的发现者,增加学生的知识面。

  最后,我又引到游戏揭示答案,再通过几道层次递进的题目的练习,使学生能够灵活运用鸽巢问题,从而达到本节课的教学目的。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号