日期:2021-05-12
这是集合间的基本关系教学方法,是优秀的数学教案文章,供老师家长们参考学习。
教材分析:类比实数的大小关系引入集合的包含与相等关系
了解空集的含义
课 型:新授课
教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用Venn图表达集合间的关系;
(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;
教学过程:
一、引入课题
1、复习元素与集合的关系——属于与不属于的关系,填以下空白:
(1)0 N;(2) $2$2$2$2$2$2$2$2$2$2$2$2$2$2$2 Q;(3)-1.5 R
2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)
二、新课教学
(一) 集合与集合之间的“包含”关系;
A={1,2,3},B={1,2,3,4}
集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;
如果集合A的.任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。
记作: $2
$2$2
读作:A包含于(is contained in)B,或B包含(contains)A
当集合A不包含于集合B时,记作A B
用Venn图表示两个集合间的“包含”关系
B
A
$2
(二) 集合与集合之间的 “相等”关系;
$2,则 $2中的元素是一样的,因此 $2
即 $2
练习
结论:
任何一个集合是它本身的子集
(三) 真子集的概念
若集合 $2,存在元素 $2,则称集合A是集合B的真子集(proper subset)。
记作:A $2 B(或B $2$2$2A)
读作:A真包含于B(或B真包含A)
举例(由学生举例,共同辨析)
(四) 空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set),记作: $2
规定:
空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:
1 $2 2 $2,且 $2,则 $2
(六) 例题
(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>2},B={x|x $25},并表示A、B的关系;
(七) 课堂练习
(八) 归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;
(九) 作业布置
1、书面作业:习题1.1 第5题
2、提高作业:
1 已知集合 $2, $2≥ $2,且满足 $2,求实数 $2的取值范围。
2 设集合 $2,
$2,试用Venn图表示它们之间的关系。
板书设计(略)
集合知识点总结
知识点包括集合的概念、集合元素的特性、集合的表示方法、常见的特殊集合、集合的分类和集合间的基本关系等知识点,除了集合的表示方法中的描述法较难理解,其它的都多是好理解的知识,只需加强记忆。
一、集合有关概念
1、集合的含义
2、集合中元素的三个特性: 确定性、互异性、无序性。
整数集Z (包括负整数、零和正整数) (4)有理数集Q (5)实数集R
6、集合的分类: (1)有限集;(2)无限集;(3)空集 。
二、集合间的基本关系
1、子集
2、真子集
3、空集
集合考法
集合是学习函数的基础知识,在段考和高考中是必考内容。在段考中多考查集合间的子集和真子集关系,在高考中也是不可少的考查内容,多以选择题和填空题的形式出现,经常出现在选择填空题的前几小题,难度不大。主要与函数和方程、不等式联合考查的集合的表示方法和集合间的基本关系。
误区提醒
2、集合的关系问题,有同学容易忽视空集这个特殊的集合,导致错解。空集是任何集合的子集,是任何非空集合的真子集。
3、集合的运算要注意灵活运用韦恩图和数轴,这实际上是数形结合的思想的具体运用。
4、集合的运算注意端点的取等问题。最好是直接代入原题检验。
5、集合中的元素具有确定性、互异性和无序性三个特征,尤其是确定性和互异性。在解题中,要注意把握与运用,例如在解答含有参数问题时,千万别忘了检验,否则很可能会因为不满足“互异性”而导致结论错误。
【典型例题】
集合与集合的关系有“包含”与“不包含”,“相等”三种:
1、 子集概念:
一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,就说集合B包含A,记作AB(或说A包含于B),
也可记为BA(B包含A),此时说A是B的子集;A不是B的子集,记作A
B,读作A不包含于B
2、集合相等:
对于集合A和B,如果集合A中的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,即集合A是集合B的子集,且集合B是集合A的子集,我么就说集合A和集合B相等,记作A=B
3、真子集:
对于集合A与B,如果AB并且A≠B,则集合A是集合B的真子集,记作
,读作A真包含于B(B真包含A)
集合间基本关系:
性质1:
(1)空集是任何集合的子集,即A;
(2)空集是任何非空集合的真子集;
(3)传递性:AB,BCAC;AB,BCAC;
(4)AB,BAA=B。
性质2:
子集个数的运算:含n个元素的集合A的子集有2n个,非空子集有2n-1个,非空真子集有2n-2个。
集合间基本关系性质:
(1)空集是任何集合的子集,即A;
(2)空集是任何非空集合的真子集;
(3)传递性
:
(4)集合相等
:
(5)含n个元素的集合A的子集有2n个,非空子集有2n-1个,非空真子集有2n-2个。
第Ⅰ卷(选择题,共50分)
一、选择题:本大题共10小题,共50分.
1.一个容量为100的样本,其数据的分组与各组的频数如下表
组别 (0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70]
频数 12 13 24 15 16 13 7
则样本数据落在(10,40]上的频率为(
)
A.0.13 B.0.39
C.0. 52 D.0.64
解析:由题意知频数在(10,40]的有13+24+15=52.
故 频率=52100=0.5 2.
答案:C
2.某大学教学系共有本科生5 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为(
)
A.80 B.40
C.60 D.20
解析:应抽取三年级的学生数为200×210=40.
答案:B
3.(2013•湖南卷)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=(
)
A.9 B.10
C.12 D.13
解析:由分层抽样的含义可得,60120+80+60=3n,所以n=13.
答案:D
4.甲、乙两名篮球运动员在某几场比赛中得分的茎叶图如图所示,则甲、乙两人在这几场比赛中得分的中位数之和是(
)
A.63 B.64
C.65 D.66
解析:甲、乙两人在这几场比赛中得分的中位数分别是36和27,则中位数之和是36+27=63.
答案:A
5.某题的得分情况如下:
得分(分 ) 0 1 2 3 4
频率(%) 37.0 8.6 6.0 28.2 20.2
其中众数是(
)
A.37.0% B.20.2%
C.0分 D.4分
解析:由于众数出现的频率最大,所以众数是0分.
答案:C
6.(2013•江西卷)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为(
)
A.08 B.07
C.02 D.01
解析:从左到右符合题意的5个数分别为:08,02,14,07,01,故第5个数为01.
答案:D
7.在某项体育比赛中,七位裁判为一选手打出的分数如下:
90 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为(
)
A.92,2 B.92,2.8
C.93,2 D.93,2.8
解析:去掉最高分9 5和最低分89后,剩余数据的平均数为x=90+90+93+94+935=92,
方差为s2=15×[(92-90)2+(92-90)2+(93-92)2+(94-92)2+(93-92)2]=15×(4+4+1+4+1)=2.8.
答案:B
8.(2013•辽宁卷)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是(
)
A.45 B.50
C.55 D.60
解析:由图知低于60分的频率为0.005×20+0.01×20=0.3,故总学生数为150.3=50人,故选B.
答案:B
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号