日期:2021-05-25
这是锐角三角函数板书,是优秀的数学教案文章,供老师家长们参考学习。
知识目标:
1.理解锐角的正弦函数、余弦函数、正切函数、余切函数的意义.
2.会由直角三角形的边长求锐角的正、余弦,正、余切函数值.
能力、情感目标:
1.经历由情境引出问题,探索掌握数学知识,再运用于实践过程,培养学生学数学、用数学的意识与能力。
2.体会数形结合的数学思想方法。
3.培养学生自主探索的精神,提高合作交流能力。
重点、难点:
1.直角三角形锐角三角函数的意义。
2.由直角三角形的边长求锐角三角函数值。
教学过程:
一、创设情境
前面我们利用相似和勾股定理解决一些实际问题中求一些线段的长度问题。但有些问题单靠相似与勾股定理是无法解决的。同学们放过风筝吗?你能测出风筝离地面的高度吗?
学生讨论、回答各种方法。教师加以评论。
总结:前面我们学习了勾股定理,对于以上的问题中,我们求的是BC的长,而的AB的长是可知的,只要知道AC的长就可要求BC了,但实际上要测量AC是很难的。因此,我们换个角度,如果可测量出风筝的线与地面的夹角,能不能解决这个问题呢?学了今天这节课的内容,我们就可以很好地解决这个问题了。
(由一个学生比较熟悉的事例入手,引起学生的学习兴趣,调动起学生的.学习热情。由此导入新课)
二、新课讲述:
在Rt△ABC中与Rt△A1B1C1中∠C=90°, C1=90°∠A=∠A1,∠A的对边、斜边分别是BC、AB,∠A1的对边、斜边分别是B1C1、A1B2 (学生探索,引导学生积极思考,利用相似发现比值相等)
( )
若在Rt△A2B2C2中,∠A2=∠A,那么
问题1:从以上的探索问题的过程,你发现了什么?(学生讨论)
结论:这说明在直角三角形中,只要一个锐角的大小不变,那么无论这个直角三角形的大小如何,该锐角的对边与斜边的比值是一个固定值。
在一个直角三角形中,只要角的大小一定,它的对边与斜边的比值也就确定了,与这个角所在的三角形的大小无关,我们把这个比值叫做这个角的正弦,即∠A的正弦= ,记作sin A,也就是:sin A=
几个注意点:①sin A是整体符号,不能所把看成sinA;②在一个直角三角形中,∠A正弦值是固定的,与∠A的两边长短无关,当∠A发生变化时,正弦值也发生变化;③sin A表示用一个大写字母表示的一个角的正弦,对于用三个大写字母表示的角的正弦时,不能省略角的符号“∠”;例如表示“∠ABC”的正弦时,应该写成“sin∠ABC”;④ Sin A= 可看成一个等式。已知两个量可求第三个量,因此有以下变形:a=csinA,c=
由此我们又可以知道,在直角三角形中,当一个锐角的大小保持不变时,这个锐角的邻边与斜边、对边与邻边、邻边与对边的比值也是固定的.分别叫做余弦、正切、余切。
在Rt△ABC中
∠A的邻边与斜边的比值是∠A的余弦,记作
∠A的对边与邻边的比值是∠A的正切,记作
∠A的邻边与对边的比值是∠A的余切,记作
(以上可以由学生自行看书,教师简单讲述)
锐角三角函数:以上随着锐角A的角度变化,这些比值也随着发生变化。我们把sinA、csA、tanA、ctA统称为锐角∠A的三角函数.
问题2:观察以上函数的比值,你能从中发现什么结论?
结论:①、锐角三角函数值都是正实数;
②、0<sinA<1,0<csA<1;
③、tanActA=1。
三、实践应用
例1 求出如图所示的Rt△ABC中∠A的四个三角函数值.
解
问题3:以上例子中,若求sin B、tan B 呢?
问题4:已知:在直角三角形ABC中,∠C=90&rd;,sin A=4/5,BC=12,求:AB和cs A
(问题3、4从实例加深学生对锐角三角函数的理解,以此再加以突破难点)
四、交流反思
通过这节课的学习,我们理解了在直角三角形中,当锐角一定时,它的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的,这几个比值称为锐角三角函数,它反映的是两条线段的比值;它提示了三角形中的边角关系。
五、课外作业:
同步练习
(一)引课
1 、请同学们回忆一下,以前测量旗杆高度的方法,并说明这些方法的理论依据是什么?(相似三角形对应边成比例)
2 、问题:如果观测的角是任意的锐角,能否求出旗杆的高度呢?要解决这个问题,只要学完三角函数这节内容,你们就可得到答案。
(二)新课
1、① Rt △ ABC 中,∠ C=90° ,各边名称是什么?一般用什么字母表示,学生回答,老师在图形中标明。
2 、在以上测量旗杆高度的各种方法中,那些量是改变的,哪些量是不变的,它们之间有何联系?
学生活动:
学生思考,分组讨论,并归纳出以下结论(如果学生有缺漏,教师可点拨,同时鼓励表扬):
(1)、在 Rt △ ABC 中,当∠ A 不变时,三角形的形状可以改变,即各边可改变大小,但任两边的比值不变。
(2)、当∠ A 取其他固定值时,任两边的比值也有唯一确定值与之对应。
3、三角函数定义:由∠ A 取每一确定值,∠ A 的对边与斜边的比值有唯一确定值与之对应,我们把这两个变量之间这种函数关系用符号 “Sin” 表示即: SinA= ∠ A 的.对边 / 斜边
同理得出: COSA= ∠ A 的邻边 / 斜边tanA= ∠ A 的对边 / ∠ A 的邻边cotA= ∠ A 的邻边 / ∠ A 的对边
学生练习:
(1)、写出∠ B 的四个三角函数
(2)、说出 SinA , cosA , tanA , coSA 值的范围,求 tanA.cotA= ?
4、例题讲解:
例 1 、( P108 )由学生回答解题思路,再由学生自主完成。
(三)巩固练习:P108 第 2 题 P109 第 3 题
(四)随堂练习
在 Rt △ ABC 中,已知 sinA=4/5 ,求∠ A 的其他三角函数值,学生板书。
(五)课堂小结:(由学生完成,教师讲解、归纳、补充)
1 、了解三角函数是解决实际问题的一种方法。
2 、理解并熟记三角函数的定义。
3 、利用三角函数解决简单的问题。
小编为大家提供的初三数学上学期锐角三角函数教学计划,大家仔细阅读了吗?最后祝同学们学习进步。
教学目标
1.经历探索直角三角形中边角关系的过程,理解正切的意义。
2.探索并掌握正切概念,能根据直角三角形中的边角关系,进行简单计算。
3.经历锐角正切意义的探索过程,提高学生的分析和归纳能力,并体会从特殊到一般的研究问题的思路和数形结合的思想方法。
教学重点:正切概念的探究
教学难点:理解正切概念
教学过程:
一、温故知新 感知整章
1.对于直角三角形的边角关系,我们已经研究了什么?
2.直角三角形边角之间有怎样的关系?
二、源于生活,体会新知
活动一:你能比较哪个梯子更陡吗?
(1)在图(1)中,梯子AB和EF哪个更陡?你是怎样判断的?
(2)在图(2)中,梯子AB和EF哪个更陡?
(3)在图(3)中,梯子AB和EF哪个更陡?
(4)在图(4)中,梯子AB和EF哪个更陡?
三、探究归纳 初识新知
活动二:想一想
如图,小明想通过测量和,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量及,算出它们比,也能说明梯子的倾斜程度。你同意小亮的看法吗?
①什么关系?为什么?
②如果改变在梯子上的位置呢?
③通过几何画板动态演示,改变在梯子上的位置,观察∠A对边和邻边的比。由此你能总结得到什么结论?
④通过几何画板动态演示,改变∠A的大小,∠A的对边和邻边的比又怎样呢?
⑤你觉得直角三角形中∠A的大小和对边与邻边的比符合我们学的什么关系?
正切概念:在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻边的比随之确定,这个比叫做∠A的正切,
记作,
注:
①是一个完整的符号,它表示∠A的正切,不表示“乘以A”。当用大写字母和希腊字母表示角时,省去符号∠。如 .
②=?
③当用三个大写字母或数字表示角时,角的符号不能省去。如: .
练习:如图,△ABC是等腰三角形,tanC是多少?
四、过关练习,新知再识
1.判断正误
①如图1,( )
注:∠A正切的前提条件是在直角三角形中。
②如图2,( )
注:,对边和邻边都是直角边。
③如图2,( )
④如图2,( )
注:正切是一个比值,没有单位。
2.在Rt△ABC中,∠C=90°,AC=5,AB=13,求和.
3.在Rt△ABC中,∠C=90°,BC=3,,求AC.
归纳:对于正切,正切值、对边和邻边三个量中知二求一。
设计意图:通过简单的计算,再次巩固学生对正切的理解,落实教学目标中的利用正切进行简单的计算。简单总结,正切、正弦和余弦计算具有共同性,正切落实好,正弦余弦学习更容易。
4.在Rt△ABC中,锐角A的对边和邻边同时扩大100倍,的值( )
A.扩大100倍 B.缩小100倍
C.不变 D.不能确定
归纳:正切值只与锐角∠A大小有关,与锐角所在的三角形大小无关。锐角∠A大小不变,正切值不变,锐角∠A改变,正切值改变。
活动三:梯子倾斜程度与的关系
那么当∠A发生变化时,的值是如何变化的?
通过几何画板再次演示,学生观察得到结论。
结论:∠A越大,值越大,梯子越陡。
设计意图:通过问题的解决,自然过渡到梯子的倾斜程度与∠A的大小关系,通过几何画板再次演示,帮助学生理解。
例1:如图,表示甲乙两个自动扶梯,哪一个自动扶梯比较陡?
活动四:正切与生活的联系
正切也经常用来描述山坡的坡度。坡角:坡面与水平面的夹角α称为坡角。坡度:坡面的铅直高度与水平宽度的比称为坡度i。坡度等于坡角的正切.
如:有一山坡在水平方向上每前进100m就升高60m,那么山坡的坡度i(即)就是:
五、能力提升 用于生活
1.在Rt△ABC中,∠C=90°,三边长分别为a b c,求和。
追问:①∠A和∠B什么关系?
②和有什么关系?
③你能总结得到什么结论?
归纳:互余的两个角的正切值互为倒数。
2.如图,某山坡坡脚的点B距坡顶的点A 100m后,坡顶A到山脚下的垂直距离是60m. 小彭欲驾驶一辆吉普牧马人从坡底开往坡顶,已知吉普牧马人的最大爬坡度是0.7,请问小彭能驾驶此车开上坡顶吗?
六、体验感知 完善学习
①你学到了什么?
②你感受到了什么?
③你还想继续知道什么?
④你有什么不明白?
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号