当前位置:首页 > 教案教学设计 > 数学教案

最大公因数教案人教版五下

日期:2021-05-11

这是最大公因数教案人教版五下,是优秀的数学教案文章,供老师家长们参考学习。

最大公因数教案人教版五下

最大公因数教案人教版五下第1篇

  教材分析:

  例3是公因数、最大公因数在生活中的实际应用。教材通过创设用整块的正方形地砖铺满长方形地面的问题情境,应用公因数、最大公因数的概念求方砖的边长机器最大值。

  学情分析:

  学生已掌握了公因数和最大公因数的概念及求法,本课内容主要是帮助学生通过分析,使学生发现这样的地砖必须即使16的因数又是12的因数。在此基础上学习本课不难。

  教学目标:

  1、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

  2、在探索新知的过程中,培养学好数学的信心以及小组成员之间互相合作的精神。

  重点难点:

  初步了解两个数的公因数和最大公因数在现实生活中的应用。初步了解两个数的公因数和最大公因数在现实生活中的应用。

  方法指导:

  自主学习合作探究

  教学过程:

  一、激趣导入

  (约5分钟)

  课件展示教材62页例3,今天我们要给这个房子铺砖大家感兴趣吗?要求要用整数块。

  二、自主学习

  (约5分钟)

  1、几个数( )叫做这几个数的公因数,其中最大的一个叫做( )

  2、16的因数有( ),24的因数有( ),16和24的公因数是( ),最小公因数是( ),最大公因数是( )。

  3、A=225,B=235,那么A和B的最大公因数是( )。

  4、用短除法求出99和36的最大公因数。

  三、合作交流

  (约13分钟)

  小组合作学习教材第62页例3。

  1、学具操作。

  用按一定比例缩小的方格纸表示地面,用不同边长的正方形纸表示地砖,我们发现边长是x厘米的正方形的纸可以正好铺满,没有剩余,其它的都不行。

  2、仔细观察,你们发现能铺满的地砖边长有什么特点?把你的发现在小组里交流。

  3、总结。

  解决这类问题的关键,是把铺砖问题转化成求公因数的问题来求。

  四、精讲点拨

  (约8分钟)

  根据自主学习、合作探究的情况明确展示任务,进行展示。教师引导讲解。

  五、测评总结

  (约9分钟)

  1、达标练习

  (1)要将长18厘米、宽12厘米的长方形纸剪成正方形的纸,没有剩余,边长可以是几厘米?最长是几厘米?

  (2)玫瑰花72朵,玉兰花48朵,用这两种花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?每束有几朵玫瑰花和玉兰花?

  (3)有一个长方形纸,长60厘米,宽40厘米,如果要剪成若干个同样大小的小正方形而没有剩余,剪出的小正方形的边长最长是多少?

  六、全课总结

  这节课你都学到了什么知识?有什么收获?

  七、作业布置

  练习十五5,6题。

  板书设计:

  最大公因数(2)

  铺砖问题:求公因数

最大公因数教案人教版五下第2篇

  教学目标:

  1、经历找两个数的公因数的过程,理解公因数和最大公因数的意义。

  2、探索找两个数的公因数的方法,会正确找出两个数的公因数和最大公因数。

  基本教学过程:

  一、创设活动情境,进行找因数活动:

  1、用乘法算式的方式分别找12和18的因数,

  2、用集合的方式找出12和18的因数,分别填在各自的圈中。

  3、同位交流找因数的方法。

  二、自主探索,总结找两个数的公因数的方法:

  1、交流方法

  2、激趣导思

  ①小组讨论:

  两个集合相交的部分填那些因数?

  ②小组汇报:

  ③师总结:揭示公因数和最大公因数的概念。

  这两个集合相交的部分填的这些因数就是12和18的公因数,其中最大的一个就是它们的最大公因数。

  ④还有其他方法吗?

  小组讨论:

  小组汇报:

  ⑤总结找两个数公因数的方法

  3、拓展引思:

  ①15和5014和3512和484和7

  说说你是怎么想的?学生明确找两个数公因数的一般方法,并对找有特征数的最大公因数的特殊方法有所体验。

  注意:教师出题时,数字不要太大,要注意把握难度要求。

  ②练一练,第42页第1题。第2题。第3题。

  ③第43页第4题:

  让学生找出这几组数的公因数后,说说有什么发现?

  ④第43页第5题:

  ⑤数学探索:

  三、总结。

最大公因数教案人教版五下第3篇

  教学内容

  《最大公因数》是人教版第十册第二单元第四节的内容,教材第80到81页的内容及第82页练习十五的第3题。

  设计思路

  这个内容被安排在人教版第十册“分数的意义和性质”这个单元内,是学生已经理解和掌握因数的含义初步学会找一个数的因数,知道一个数因数的特点的基础上进行教学的,这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则运算的基础,对于学生的后续学习和发展,具有举足轻重的用。

  教学目标

  1、使学生理解两个数的公因数和最大公因数的意义。

  2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

  3、培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。

  4、培养学生抽象、概括的能力。

  重点难点

  1、理解公因数和最大公因数的意义。

  2、掌握求两个数的最大公因数的方法。

  教具准备

  多媒体课件、卡片

  教学过程

  一、导入

  1、学校买回12棵风景树,现在要栽种起来,栽种时行数不限,但每行栽种的数目相等,可以怎么栽种?16棵呢?

  2、分别写出16和12的所有因数。

  二、教学实施

  1、老师用多媒体课件演示集合图。

  指出:1,2,4是16和12公有的因数,叫做他们的公因数。

  其中,4是最大的公因数,叫做他们的最大公因数。

  2、完成教材第80页的“做一做”

  先让学生独立思考,再让拿卡片的同学快速站一站,那几个数站在左边,那几个数站在右边,那几个数站在中间,最后集体订正。

  3、出示例2。怎样求18和27的最大公因数?

  (1)学生先独立思考,用自己想到的方法试着找出18和27的最大公因数。

  (2)小组讨论,互相启发,再在全班交流。

  (3)老师用多媒体课件和板书演示方法

  方法一:先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。

  方法二:先找出18的因数,再看18的因数中有哪些是27的因数,从中找最大。

  18的因数有:①,2,③,6,⑨,18

  方法三:先找出27的因数,再看27的因数中有哪些是18的因数,从中找最大。

  27的`因数有:①,③,⑨,27

  方法四:先写出18的因数1,2,3,6,9,18。然后从大到小依次看是不是27的因数,第一个数9是27的因数,所以9是18和27的最大公因数。

  4、完成教材第81页的“做一做”。

  学生先独立完成,独立观察,每组数有什么特点,再进行交流。

  小结:求两个数最大公因数有哪些特殊情况?

  ⑴当两个数成倍数关系时,较小的数就是他们的最大公因数。

  ⑵当两个数只有公因数1时,他们的最大公因数是1。

  三、课堂练习设计(多媒体课件出示)

  选出正确答案的编号填在括号里

  1、9和16的最大公因数是()

  A、1B、3c、4D、9

  2、16和48的最大公因数是()

  A、4B、6c、8D、16

  3、甲数是乙数的倍数,甲乙两数的最大公因数是()

  A、1B、甲数c、乙数D、甲、乙两数的积

  四、课堂小结

  通过本节课的学习,我们主要认识了公因数、最大公因数的意义;掌握了找两个数的最大公因数的方法:找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找出最大的公因数;也可以先找到一个数的因数,再从大到小看看那个数是另一个数的因数,从而找到最大公因数。

  五、留下疑问(略)

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号