日期:2021-04-22
这是分式的基本性质的经典导入,是优秀的数学教案文章,供老师家长们参考学习。
下面我将从:教材分析、教学目标、教法分析、教学过程分析、教学设计说明等几个方面对我的教学设计进行说明。
一、教材分析
1、教材的地位及作用
“分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式” 的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。
2、学生情况分析
学习的过程是自我生成的过程,其基础是学生原有的知识。在学习本节课之前,学生原有的知识市分数的基本性质的运用。八年级学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定的归纳总结能力,那么如何让学生灵活运用分式的基本性质进行化简就是本节内容要突破的难点。
3、教学重难点分析
根据以上学习任务和学情分析,确定本节课的教学重难点如下:
教学重点:理解并掌握分式的基本性质,对分式基本性质的理解及其初步运用。
教学难点:灵活运用分式的基本性质,进行分式化简、变形。
二、教学目标
教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的,因此我确定本课教学目标是:
1、了解分式的基本性质。灵活运用“性质”进行分式的变形。
2、通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。
3、通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的.的意识。
三、教法分析
1、教学方法
基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。
2、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究—主动总结—主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索—发现—实践—总结的能力。
因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
四、教学准备
多媒体课件,小黑板
五、教学过程
活动1:复习分数的基本性质
在教学过程中,为了达到激活学生原有的知识,,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:
1、下列分数是否相等?可以进行变形的依据是什么?
2、分数的基本性质是什么?怎样用式子表示?
老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质。
设计意图:通过复习分数的通分、约分总结出分数的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。
这里我通过问题情境的创设,引发学生的兴趣,由复习分数的基本性质自然过度到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础。
活动2:类比得出分式的基本性质
因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:
1、类比分数的基本性质,你能猜想出分式有什么性质吗?
2、你能用语言来描述分式的基本性质吗?
3、类比分数的基本性质,在理解分式基本性质时应注意那几方面?
老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质。
设计意图:让学生自己运用类比的方法发现分式的基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的。
同时,我组织学生进行全班讨论、交流,通过互相补充以及教师适时的引导,学生们总结出:
1、分式与分数有相同的形式,只是分式的分子和分母都是整式;
2、分式其实就是用字母代替数得到的,即分式中的字母本身就代表某个数,因此分数的基本性质也应该适用于分式。
在此基础上,我们进一步总结得到:
1、分式的基本性质:
分式的分子与分母同乘以(或除以)不为零的整式,分式的值不变。
2、分式的基本性质中应该注意:
(1)充分理解“同时”这个词的含义,它包含两层意义:分子、分母同时乘以或除以,同一个整式;
(2)注意括号内的限制条件:M、N是不为零的整式,若M、N=0,则分式就没有意义了;
(3)此性质的隐含条件是:分式 中,B≠0。
设计意图:一方面检查学生对“性质”的认识程度,另一方面通过学生的思考与归纳,进一步加深对“性质”理解。
我在这里的设计,主要原因是:
1、运用类比思想让学生通过知识迁移学习新知,比教师讲授更能加深学生的理解。
2、体验“类比”思想和方法,有利于学生学习能力的提高;
3、学生的理解层次尚浅,需要教师适时的点拨与归纳,因此,提出问题时应引起学生的关注,强化对性质的理解。
活动3:初步应用分式的基本性质
课件展示例题,学生独立思考问题,然后小组讨论,老师巡堂给予指导,最后由学生总结出解题经验。
六、教学设计说明
这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。
下面我将从:教材分析、教学目标、教法分析、教学过程分析、教学设计说明等几个方面对我的教学设计进行说明。
一、教材分析
1、教材的地位及作用
“分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式” 的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。
2、学生情况分析
学习的过程是自我生成的过程,其基础是学生原有的知识。在学习本节课之前,学生原有的知识市分数的基本性质的运用。八年级学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定的归纳总结能力,那么如何让学生灵活运用分式的基本性质进行化简就是本节内容要突破的难点。
3、教学重难点分析
根据以上学习任务和学情分析,确定本节课的教学重难点如下:
教学重点:理解并掌握分式的基本性质,对分式基本性质的理解及其初步运用。
教学难点:灵活运用分式的基本性质,进行分式化简、变形。
二、教学目标
教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的,因此我确定本课教学目标是:
1、了解分式的基本性质。灵活运用“性质”进行分式的变形。
2、通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。
3、通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的.的意识。
三、教法分析
1、教学方法
基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。
2、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究—主动总结—主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索—发现—实践—总结的能力。
因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
四、教学准备
多媒体课件,小黑板
五、教学过程
活动1:复习分数的基本性质
在教学过程中,为了达到激活学生原有的知识,,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:
1、下列分数是否相等?可以进行变形的依据是什么?
2、分数的基本性质是什么?怎样用式子表示?
老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质。
设计意图:通过复习分数的通分、约分总结出分数的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。
这里我通过问题情境的创设,引发学生的兴趣,由复习分数的基本性质自然过度到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础。
活动2:类比得出分式的基本性质
因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:
1、类比分数的基本性质,你能猜想出分式有什么性质吗?
2、你能用语言来描述分式的基本性质吗?
3、类比分数的基本性质,在理解分式基本性质时应注意那几方面?
老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质。
设计意图:让学生自己运用类比的方法发现分式的基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的。
同时,我组织学生进行全班讨论、交流,通过互相补充以及教师适时的引导,学生们总结出:
1、分式与分数有相同的形式,只是分式的分子和分母都是整式;
2、分式其实就是用字母代替数得到的,即分式中的字母本身就代表某个数,因此分数的基本性质也应该适用于分式。
在此基础上,我们进一步总结得到:
1、分式的基本性质:
分式的分子与分母同乘以(或除以)不为零的整式,分式的值不变。
2、分式的基本性质中应该注意:
(1)充分理解“同时”这个词的含义,它包含两层意义:分子、分母同时乘以或除以,同一个整式;
(2)注意括号内的限制条件:M、N是不为零的整式,若M、N=0,则分式就没有意义了;
(3)此性质的隐含条件是:分式 中,B≠0。
设计意图:一方面检查学生对“性质”的认识程度,另一方面通过学生的思考与归纳,进一步加深对“性质”理解。
我在这里的设计,主要原因是:
1、运用类比思想让学生通过知识迁移学习新知,比教师讲授更能加深学生的理解。
2、体验“类比”思想和方法,有利于学生学习能力的提高;
3、学生的理解层次尚浅,需要教师适时的点拨与归纳,因此,提出问题时应引起学生的关注,强化对性质的理解。
活动3:初步应用分式的基本性质
课件展示例题,学生独立思考问题,然后小组讨论,老师巡堂给予指导,最后由学生总结出解题经验。
六、教学设计说明
这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。
(一)激趣引思、提出要求
同学们,你们听过阿凡提的故事吗?今天老师也给大家带来了一则阿凡提的故事。让我们一起来看一看!谁来读一读?(指名读)你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话呢?
有一些同学知道,还有一些同学不知道。不过没有关系,等我们学习了今天的内容之后,我相信在座的每一位同学都能够回答。你们有信心吗?恩,好,那我们就开始上课了!
(二)自主探究,发现规律
1、出示例1的四幅图。
我们先来看一道题目。分别用分数表示每个图里的涂色部分。
(1)谁来说第一个?
全部答完后问:这里的1/3谁来说说它表示什么含义呢?3/9呢?
同学们,你们比较比较这几幅图的阴影部分,想想看,你发现了什么呢?也就是说,哪3个分数是相等的呢?
(2)师:这里有个1/2,你能说一个和1/2相等的分数吗?
2/4、4/8、8/16......还有吧,是不是还可以说出好多好多啊?
那,这些分数是不是相等呢?咱们口说无凭,咱们来做个小实验证明它门是相等的,好不好?
先别急,先来看看有哪些实验要求。
咱们这个实验的目的上一什么?验证什么?
咱们实验的方法有哪些呢?
实验有什么要求?操作有序什么意思呢?要听从小组长的安排
1、实验目的:验证猜想。
2、方法:折一折、分一分、画一画、算一算......
3、要求:小组合作,明确分工,操作有序。
我们要来比一比,哪个小组做的实验既快又好。一会儿,我们把他的作品展示一下。好,开始!
学生操作,老师巡视指导。
集体交流结果。
咱们刚才通过做实验,发现这些分数的大小怎样?也就是分数的大小不变。这些分数的大小相等,可是它们的分子、分母变了吧!怎么回事呢?这里面有什么规律呢?你发现了什么?能不能告诉老师。
把你的发现先和同桌交流交流。
生1:我发现由到,分子被扩大了2倍,分母也被扩大了2倍,所以它们是相等的。
师:还有谁想说说你的发现?
生2:我发现由到,分子被扩大了3倍,分母也被扩大了3倍,所以它们的大小相等。
师:换一组数据来说说自己的发现?
生:由到,分子、分母都被缩小了3倍,它们的大小不变。
师:刚才同学们都说了自己的发现,想想看,要使分数的大小不变分数的分子和分母应该怎样变化就能使分数的大小不变了呢?
师:为什么要0除外?
师:这就是咱们今天学习的“分数的基本性质”(板书课题)
师:谁来说说看,分数的基本性质是什么呢?
生:一个分数的分子和分母同时乘或除以一个相同的数(0除外),它们的大小不变。
我们一齐读一遍。
师:这个分数的基本性质跟咱们以前学的什么知识有点相似啊?
除法中商不变的性质你还记得吗?
同学们想想看,这两个性质之间有什么关系呢?
根据分数与除法的关系,被除数相当于分数的分子,除数相当于分数的分母,在除法当中有商不变的性质,那在分数中也有它的基本性质。
师:好,那现在你知道阿凡提为什么会笑吗?他又说了哪些话呢?
师:2/6到3/9分子分母怎样变化的?分子和分母同时乘了1.5,呢也就是说这里相同的数不仅可以指整数,还可以指小数。
(三)巩固练习,强化记忆
好,那下面咱们就用今天学的知识来做几道题,好不好?
1、把书翻到61页,练一练第一题,请你涂一涂填一填。我看谁的动作最快。
集体交流。
2、下面我们来填空补缺想理由。(出示练一练第二题)
他们这样填是根据什么?
3、出示练习十一第二题
独立完成,集体订正。
(四)课堂作业,运用知识
练习十一第三题
(五)课堂小结,认识自己
今天这节课,你学到了什么?
Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号