当前位置:首页 > 教案教学设计 > 数学教案

《二次函数的图像》教案

日期:2022-06-17

这是《二次函数的图像》教案,是优秀的数学教案文章,供老师家长们参考学习。

  教学目标:

  1、经历描点法画函数图像的过程;2、学会观察、归纳、概括函数图像的特征;3、

  掌握型二次函数图像的特征;

  4、经历从特殊到一般的认识过程,学会合情推理。

  教学重点:

  型二次函数图像的描绘和图像特征的归纳

  教学难点:

  选择适当的自变量的值和相应的函数值来画函数图像,该过程较为复杂。

  教学设计:

  一、回顾知识

  前面我们在学习正比例函数、一次函数和反比例函数时时如何进一步研究这些函数的?先(用描点法画出函数的图像,再结合图像研究性质。)

  引入:我们仿照前面研究函数的方法来研究二次函数,先从最特殊的形式即 入手。因此本节课要讨论二次函数 ( )的图像。

  板书课题:二次函数 ( )图像

  二、探索图像

  1、 用描点法画出二次函数 和 图像

  (1) 列表

  x

  …

  -2

  -1

  0

  1

  2

  …

  …

  4

  1

  0

  1

  4

  …

  …

  -4

  -

  -1

  -

  0

  -

  -1

  -

  -4

  …

  引导学生观察上表,思考一下问题:

  ①无论x取何值,对于 来说,y的值有什么特征?对于 来说,又有什么特征?

  ②当x取 等互为相反数时,对应的y的值有什么特征?

  (2) 描点(边描点,边总结点的位置特征,与上表中观察的结果联系起来).

  (3) 连线,用平滑曲线按照x由小到大的顺序连接起来,从而分别得到 和 的图像。

  2、 练习:在同一直角坐标系中画出二次函数 和的图像。

  学生画图像,教师巡视并辅导学困生。(利用实物投影仪进行讲评)

  3、二次函数 ( )的图像

  由上面的四个函数图像概括出:

  (1) 二次函数的 图像形如物体抛射时所经过的路线,我们把它叫做抛物线,

  (2) 这条抛物线关于y轴对称,y轴就是抛物线的对称轴。

  (3) 对称轴与抛物线的交点叫做抛物线的顶点。注意:顶点不是与y轴的交点。

  (4) 当 时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x轴的上方(除顶点外);当时,抛物线的开口向下,顶点是抛物线上的最高点图像在x轴的 下方(除顶点外)。

  (最好是用几何画板演示,让学生加深理解与记忆)

  三、课堂练习

  观察二次函数 和 的图像

  (1) 填空:

  抛物线

  顶点坐标

  对称轴

  位 置

  开口方向

  (2)在同一坐标系内,抛物线 和抛物线 的位置有什么关系?如果在同一个坐标系内画二次函数 和 的图像怎样画更简便?

  (抛物线 与抛物线 关于x轴对称,只要画出 与 中的一条抛物线,另一条可利用关于x轴对称来画)

  四、例题讲解

  例题:已知二次函数 ( )的图像经过点(-2,-3)。

  (1) 求a 的值,并写出这个二次函数的解析式。

  (2) 说出这个二次函数图像的顶点坐标、对称轴、开口方向和图像的位置。

  练习:(1)课本第31页课内练习第2题。

  (2) 已知抛物线y=ax2经过点A(-2,-8)。

  (1)求此抛物线的函数解析式;

  (2)判断点B(-1,- 4)是否在此抛物线上。

  (3)求出此抛物线上纵坐标为-6的点的坐标。

  五、谈收获

  1.二次函数y=ax2(a≠0)的图像是一条抛物线.

  2.图象关于y轴对称,顶点是坐标原点

  3.当a>0时,抛物线的开口向上,顶点是抛物线上的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点 六、作业:见作业本。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号