当前位置:首页 > 教案教学设计 > 教学设计一等奖

分数除以整数优秀教案一等奖

日期:2022-06-12

这是分数除以整数优秀教案一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。

分数除以整数优秀教案一等奖

分数除以整数优秀教案一等奖第 1 篇

教学目标

  1.通过例2的学习,学生能够理解整数除以分数计算法则的推导过程,引导学生正确地总结出计算法则。

  2.能运用法则正确地进行计算。

  3.培养学生观察、比较、分析的能力和语言表达能力,培养学生善于抓住事物本质的能力和思维方式。

  教学重点

  整数除以分数计算法则的推导过程。

  教学难点

  如何区别、统一分数除以整数、整数除以分数两个计算法则。

  教学过程设计

  (一)复习旧知

  1.说出下面各题的倒数。(投影出示)

  2.把算式补充完整。(投影出示)

  问:分数除以整数的法则是什么?谁不变?谁变?

  生:被除数不变,除号变乘号,除数变成它的倒数。(法则的本质)

  问:分数除以整数是把谁变成它的倒数了?为什么?

  生:把整数变成它的倒数了,因为整数处在除数的位置。

  师:我们上节课学习了分数除以整数的计算法则。这节课我们来学习整数除以分数的计算法则。看谁最善于思考、分析,能正确的总结出计算法则。(板书:整数除以分数)

  (二)新授教学

  1.一辆汽车2小时行驶90千米。1小时行驶多少千米?

  问:①谁会列式计算?

  板书: 02=45(千米)

  ②根据什么这样列式?

  生:根据路程时间=速度。

  问:要求1小时行驶多少千米就是求什么?

  生:求汽车的速度。

  问:怎样列式?为什么这样列式?

  怎样进行计算呢?我们认真分析一下题意。画出线段图帮助我们寻找解题的方法。

  师:根据你们说的老师画图。用一条线段的长表示1小时,把它平

  问:怎么求?为什么这样求?

  (2)要求1小时行多少千米,怎么求?

  算式变化形式:

  根据上面的推导过程可得出:

  这两个算式相等吗?

  我们把这道题完成。

  答:汽车1小时行驶45千米。

  (3)观察算式:谁没变?谁变了?怎么变的?

  讨论:整数除以分数的计算法则是什么?

  谁能说一说?

  板书:整数除以分数等于整数乘以这个分数的倒数。

  同桌互相说一说。

  谁愿意给大家说一说?

  (4)根据我们总结出的法则,同学们试做下面两道题,看谁做得又对又快。

  订正,错的说错在哪里,并改正过程。

  (三)巩固练习

  1.投影出示。

  (1)分数除以整数(0除外)等于分数乘以整数的倒数。

  (2)整数除以分数,等于整数乘以分数的倒数。

  问:第一个法则整数后面为什么要加上0除外而第二个整数后面就不加了呢?

  生:第一个法则整数是处在除数的位置,除数不能为0,所以必须加上0除外;第二个法则中整数处在被除数的位置,可以是0,因此不必加上0除外了。

  问:你看这两个法则一会儿变成乘以这个整数的倒数,一会儿变成乘以这个分数的倒数,把我们都弄糊涂了。你有什么办法记清这两个计算法则吗?请把你的好方法讲给你周围的同学听。看谁的方法最好。

  问:这两个法则的共同之处在哪儿?谁愿意把你的方法讲给全班同学听?

  生:这两个计算法则虽然叙述的不一样,但它们都是被除数不变,除号变乘号,除数变成它的倒数。这样记就不会记错了。

  2.把下面各题补充完整。

  3.计算。在本上写过程,得数填在书上。

  订正,指名把过程写在投影片上。

  错的同学说明错因。

  4.判断。对的举,错的举,并说明理由。

  师:同学们的思维非常敏捷,语言表达能力也很强。同学们对每一道题都是认真观察、思考,这样我们就能避免出现很多不该出的错误。

  (四)课堂总结

  这节课我们学习了什么内容?整数除以分数的计算法则是什么?还有什么问题?

  (五)作业

  课本第36页第1,3,4题。

  课堂教学设计说明

  本节课的内容是整数除以分数的计算法则。这节课有两个难点:

  第一是理解整数除以分数的计算法则的推导过程。为了突破这一难点,采用了把例2的条件和问题分别解剖加以分析的方法,引导学生根助学生理解算理,效果很好。

  第二是分数除以整数,整数除以分数的计算法则的应用。这一部分内容学生容易产生混乱。为了突破这一难点,教师要调动学生的思维,激发他们的兴趣,使学生抓住了一不变二变这一本质。在练习中教师设计了一组对比练习。加深学生对法则的理解。

分数除以整数优秀教案一等奖第 2 篇

教学目标:

1、 通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

2、 动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、 培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

教学重难点:

使学生理解算理,正确总结、应用计算法则。

教学难点:

使学生理解整数除以分数的算理。

教学过程:

一、复习

1、复习整数除法的意义

(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

2、口算下面各题

×3 × × ×6

二、新授

1、教学例1

(1)出示插图及乘法应用题,学生列式计算:100×3=300(克)

(2)学生把这道乘法应用题改编成两道除法应用题,并解答。

A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)

B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)

(3)将100克化成 千克,300克化成 千克,得出三道分数乘、除法算式。

×3= (千克) ÷3= (千克) ÷ =3(盒)

(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。

2、巩固分数除法意义的练习:P28“做一做”

3、教学例2

(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的 平均分成2份,并通过操作得出每份是这张纸的几分之几。

(2)小组汇报操作过程,得出:将一张纸的 平均分成2份,每份是这张纸的 。

(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

(4)如果把这张纸的 平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

4、引导学生观察 ÷2和 ÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

三、练习

÷3 ÷20 ÷5 ÷6

四、总结

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

2、谁来把这两部分内容说一说?

板书设计:

分数除以整数

甲数÷乙数(0除外)=甲数×乙数的倒数

(1) 300÷3== 100 (2) ÷3= × ==

分数除以一个数(0除外)等于分数乘这个数的倒数。

分数除以整数优秀教案一等奖第 3 篇

 一、教材分析

  我说课的内容是西师版六年级上册第三单元第一部分分数除法第2课时的内容——《分数除以整数》。这节课的主要内容是分数除以整数的计算法则,这是本节课的重点和难点。

  分数除以整数有分子能整除整数和不能整除整数两种情况讨论。能整除的整数,直接应用学生已有的经验来解决。不能整除的整数,又分两种情况讨论:一种是把不能整除的现象转化成能整除的现象,另一种情况是用这个分数乘这个整数的倒数,教材重点讨论后一种解法。

  用图解法配合学生的思维,实现意义上的转化(见小孩的对话框),再通过意义的转化来帮助学生理解分数乘整数倒数的解法。

  教学时教师可以通过直观图帮助学生理解题意,引导学生通过得出两种不同计算方法,最后自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算÷2,发现问题,最后归纳出分数除以整数的计算方法。提高学生的解题能力,发展学生的创新思维能力。

  二、教学目标

  根据上述教材分析,结合本节课的内容特点,本人确定了以下的教学目标:

  1.知识与技能:在具体情境中理解分数除以整数的意义,利用已有知识理解和探索分数除以整数的算理和算法。

  2.过程与方法:通过实践运用,选择合理的方法正确计算分数除以整数。

  3.情感态度与价值观:进一步培养学生的分析判断能力和实践运用能力。

  三、教学重点、难点:

  教学重点:探索分数除以整数的计算方法。

  教学难点:分数除以整数的计算。

  本节课主要学习分数除以整数,在这之前学生已经掌握了整数除法的意义和分数乘法的意义及计算,而本课的学习将为统一分数除法计算法则打下基础。

  四、说教法 、学法

  说教法:

  《数学课程标准》对计算教学有明确的要求,即淡化笔算、重视口算、加强估算。分数除以整数是学生继续学习的重要基础,在教材中占有重要的地位,但在现行教材中对估算意识的培养还未凸显出来。针对这一现象,我力求把培养学生的估算意识,发展学生的估算能力融入教学,在课堂上形成具体的教学行为,从而加以体现。

  学生是课堂教学中的主体,将更多的时间、空间留给学生,是调动和发挥学生主体意识的重要途径之一。从问题的提出,就让学生主动参与到探索和交流的数学活动中来。在探索的过程中,教师尊重每一个学生的个性特征,允许不同的学生尽可能地从不同角度认识问题,采用不同的方式表达自己的想法,用不同的知识与方法解决问题。

  在教学过程中要引导学生加以评价,加强反思。当学生探索出多种算法后,学生给予恰到好处的评价,学生就会随时深入思考,同时也能反思每一种算法是否更具有一般性,普遍性。

  说教法:

  为了达成教学目标,本课的教学必须贯彻以学生为主体,坚持启发与发现法相结合的教学方法,引导学生动手实践,在体验中、在交流中发现规律。

  学习方法上强调以探究学习法为主。认知建构理论告诉我们,学习是学生积极主动的内化过程。只有通过主动参与获得的知识,才是有意义的。因此,在重难点的学习上,通过折纸实验与验证,数形结合,从而实现真正的理解。

  五、说教学过程

  对本节课的教学,我精心设计了几个主要环节。

  (一)新课导入

  (投影出示学生卫生大扫除的场景。)

  教师通过谈话,明天就是“六一”儿童节了,学校决定今天下午搞一次卫生大扫除,学校将操场平均分给六年级两个班打扫,每个班应该打扫这个操场的几分之几?这个问题应该怎样计算?如何列算式?

  然后再进一步引导,如果是把操场的 平均分给六年级两个班打扫,求每个班应该打扫这个操场的几分之几? 应该怎样列算式?

  怎样计算呢?引出课题,这节课我们就一起来学习——分数除以整数。(板书课题)

  【设计意图:创设学生熟悉的生活情境,激发了学生浓厚的学习兴趣。在求“将操场平均分给六年级两个班打扫,每个班应该打扫这个操场的几分之几?”时,利用学生掌握整数除法的经验基础,使学生再次感受整数除法的意义;通过把条件改为“把操场的 平均分给六年级两个班打扫”迁移到本课的问题,沟通了整数除法与分数除以整数意义上的联系,理解分数除法的运算意义,达到水到渠成的`效果。】

  (二)探究新知

  教师让学生想一想,你能利用什么方法解答 ÷2 ?先让学生独立思考解决,然后在小组内交流方法,教师巡视指导。

  学生小组内交流后汇报交流解决方法,并说明理由。

  学生可能找到很多种解法,如:

  ①将 化成小数0.8,用0.8÷2=0.4,0.4即为 。

  ② ÷2= = 。

  ③ ÷2可以看作将4个 平均分成2份,每一份就是2个 ,即 。

  ……

  小组汇报交流之后,教师引导学生对使用的算法算理进行深入分析。

  然后教师再问,你还有什么疑问吗?

  (若学生有问,如果分数不能化成有限小数怎么办?分子除以分子除不尽怎么办?面对这些问题,就顺势引入新问题“将操场的 平均分给六年级三个班,每班打扫它的几分之几?”

  如果学生没有疑问,教师可以提出问题:“将操场的 平均分给六年级三个班,每班打扫它的几分之几?”)

  【设计意图:让学生感受一下知识迁移,从而可以培养学生思维的灵活性。】

  提出问题之后,让学生先试一试用刚才的方法解决,看看有什么问题?

  用以上三种方法都出现了在解决过程中除不尽的情况。

  然后让学生独立思考:怎样解答这道题?

  提示:可借助画图的来理解,寻找解决方法。

  学生解决之后, 引导学生交流方法,分析算理。(若学生无法使用以下方法,教师可加以指导)

  在上面的基础上,教师进一步引导,通过验证,你能否进行总结?

  引导学生进行小结:分数除以整数(0除外)等于分数乘这个整数的倒数。

  这是运用转换的方法将分数除法转换成分数乘法来解答。

  【设计意图:尝试学习,学生的主体地位得到尊重,在学习过程中,进行独立思考,在相互交流中积累知识。】

  教师接着追问,对比刚才的不同解答方法,说说你最喜欢哪种方法,你认为哪种方法最方便又实用?

  学生各抒己见。

  【设计意图:让学生体会到当分子能被整数整除时用第一种方法才方便,当分子不能被整数整除时用第二种方法简单,并且在一般情况下都可以进行计算,可普遍使用。】

  (三)巩固新知

  1.处理教材第32页试一试。

  学生独立完成,小组内交流。

  2.处理课堂活动第1题第(2)小题,学生分组或同桌对口令。

  3.让学生独立教材第34页练习八第8题。

  学生独立完成,教师巡视指导学困生,集体讲评。

  【设计意图:设计意图:练习题要有针对性,要少而精,既让学生巩固所学知识,体验成功,又培养学生的思维解题能力。】

  (四)归纳总结

  谈话:通过这节课的学习,你有什么收获?

  分数除以整数的规律是怎样的?

  这节课,你还有什么不太明白的地方?

  【设计意图:有利于学生对所学知识的一个全程认识,丰富学生的学习知识,有益知识的积累,能提高学生学习的积极性和语言表达能力。】

  六、说板书

  分数除以整数

  ÷2= = ÷3= × =

  法则:分数除以整数(0除外)等于分数乘这个整数的倒数。

  【设计意图:本节课的板书设计简洁明了,重点突出,使学生通过板书能对本节课所学的知识一目了然,起到了画龙点睛的作用。】

分数除以整数优秀教案一等奖第 4 篇

 教学目标

  1、使学生理解整数除法分数的计算方法,并能正确地进行计算。

  2、培养学生分析、推理和概括等思维能力。

  教学重难点

  整数除以分数的计算方法。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、复习旧知

  二、教学新课

  一、 巩固练习

  四、小结。

  五、作业

  1、口算

  3/431/542/766/112

  分数除以整数通常是怎样计算的?

  2、复习第(1)题

  学生口答算式与结果。

  这一题已知什么数量,要求什么数量?按怎样的数量关系求?

  出示数量关系式:速度=路程时间

  3、口答填空

  3/10小时是()个1/10小时。

  1小时是()个1/10小时。

  4、引入新课

  1、教学例2

  这一题已知什么数量?要求什么数量/根据数量关系式怎样列式?

  (183/10)

  画出一条线段,并提问:如果把这条线段看做1小时行的千米数,怎样来表示3/10小时行的千米数?

  根据学生的回答把这条线段平均分成10份,其中的3份用颜色线画出。

  师边述说边画线段。

  问:从图伤看,3/10小时行驶18千米,就是几个1/10小时行18千米?求1小时行多少千米。就是求几个1/10小时行多少千米?

  要求10个1/10小时行多少千米。先要求出什么?图上哪一段表示1/10小时行的路程?

  根据回答把线段图补充完整。

  讨论:按这样来想,你认为第一步求什么?怎样求?

  (1)1/10小时行的千米数是:183

  为什么要用183?183能不能转化成用乘法来计算?

  讨论:1/10小时行的千米数已经用式子表示出来了,你觉得第二步可以求什么?怎样求?

  (2)1小时行的千米数是:181/310

  (3)为什么要用181/3的积再乘10?根据乘法结合律,181/310还可以怎样乘?

  问:183/10求出的是1小时行的千米数,1810/3也表示1小时行的千米数,那么183/10之间有怎样的关系?

  从上面的推想过程看出,183/10转化成什么样的计算了?

  比较这个等式里的算式,在等式两边,什么没有变?什么变了?是怎样变的?

  2、小结。

  1、练一练1

  2、练一练2整数除以分数是怎样计算的?

  3、练习八2整数除以分数和整数乘分数在计算时有什么不同?

  4、练习八3

  分组练习

  做完后问:每一组的两道题有什么不同地方?计算时有什么共同的地方?

  说一说在整数除以分数时,要乘哪个数的倒数,在分数除以整数时,要乘哪个数的倒数。

  练习八、1、4、5

  181/310

  =18(1/310)

  =1810/3

  课后感受

  此节课的教法与前一节类似,更多的在于在学生昨天学会分析方法的前提下更多的放手让学生自己去探索规律、寻求解题方法。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号