当前位置:首页 > 教案教学设计 > 教学设计一等奖

小学数学平均数教学设计一等奖

日期:2022-04-25

这是小学数学平均数教学设计一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。

小学数学平均数教学设计一等奖

小学数学平均数教学设计一等奖第 1 篇

教学目标:

  1.经历用平均数刻画一组数据特征的过程,体会平均数的意义,掌握求简单平均数的方法。

  2.经历移多补少、先合后分、估算等多样化算法的讨论,会利用图形直观估计平均数,能选择灵活的方法解决平均数问题。

  3.体会平均数在现实生活中的广泛应用,激发参与热情,增强应用数学的意识。

  教学重点:

  体会平均数的意义,掌握求平均数的方法。

  教学难点:

  理解平均数的意义

  教学具准备:

  套圈统计图(每组一个)、多媒体课件

  教学过程:

  一、设疑引欲,提出问题

  看套圈比赛的录像,出示统计图。

  1、这幅统计图表示他们套中的个数,从中你知道了些什么?

  2、想一想,是男生套得准一些还是女生套得准一些呢?

  二、解决问题,探求新知

  1.产生求平均数的心理需求

  (1)学生讨论交流哪一队套圈套得准一些。

  (2)提问:怎样比才既合理又公平呢?

  (3)揭示:要比男生套得准一些还是女生套得准一些,就是要比较男女生平均每人套中的个数,也就是平均数。

  2.自主探索平均数的意义和计算方法

  先求男生平均每人套中的个数,学生讨论交流。

  (1)通过移多补少,直观揭示平均数的意义

  (2)揭示“先求和再平均分”的求平均数的一般方法

  列式计算:5+9+8+6=28(个)28÷4=7(个)

  这里的28指的是什么?为什么要除以4?

  求女生平均每人套中的个数。

  (1)估一估

  (2)算一算:11+4+8+2+5=30(个)30÷5=6(个)

  这里的30指的是什么?为什么这里用总数除以的是5而不是4?

  小结:通过比较,我们发现在这次比赛中,男生套得准一些。

  3.理解平均数的范围

  (1)比较

  男生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?

  女生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?

  (2)提问:平均数会比这里最大的数大吗?会比最小的数小吗?

  (3)小结:平均数是通过把多的部分移给少的部分,使大家都相等而得到的数,所以平均数在最大数与最小数之间。

  三、拓展练习,深入理解

  1.练习用“求和再平均分”的方法求平均数

  (1)出示校运动队三年级学生肺活量情况统计图(三名学生)

  提问:你能算出他们的平均肺活量吗?

  交流:把你的想法与同学们交流交流。

  (2)出示三年级部分学生肺活量情况统计图(四名学生)

  提问:算算他们的平均肺活量。

  比较:经常参加体育锻炼的学生平均肺活量比一般学生要大。

  2.加深对平均数意义的理解

  (1)出示游泳馆录像并配音:一天小明去学游泳,这个游泳池的平均水深130厘米。小明心想:我身高145厘米,下水学游泳不会有危险。同学们,你们觉得他想得对吗?

  (2)学生交流

  3.利用平均数在最大值和最小值之间的特点判断平均数的计算结果是否正确

  (1)出示并配音:《中小学生体育锻炼运动负荷卫生标准》规定:心跳次数平均每分钟在120~200次为运动量适宜,低于120次为运动量过小,高于200次为运动量过大。

  我们对小明在游泳过程中的心跳情况进行了统计。

  (2)提问:从表中你知道些什么?

  (3)他平均每分钟的心跳次数不可能是下面哪个答案?为什么

  ①130次

  ②160次

  ③190次

  (4)根据平均数的这个特点,你能说出这个平均数的范围吗?

  (5)小明的运动量适宜吗?

  4.进一步理解平均数的意义

  (1)出示一高一矮两名学生

  指一指:他们俩的平均身高大概在什么位置?

  (2)出示郭晶晶的照片和她与另一位体坛明星的平均身高的虚线(虚线比郭晶晶矮)

  指一指:另一位体坛明星大概有多高?

  (3)出示郭晶晶的照片和她与另一位运动员的平均身高的虚线(虚线比郭晶晶高)

  指一指:这位运动员的身高大概在哪里?

  猜一猜:他是谁?

  (4)出示新浪网上的NBA排行榜

  找一找:有平均数吗?

  想一想:姚明的总得分比特里要高,为什么他们的均分却相等呢?

  四、全课总结,提升认识

小学数学平均数教学设计一等奖第 2 篇

教学目标:

  1.使学生进一步掌握平均数的意义和求平均数的方法。

  2.懂得平均数在统计学上的意义和作用。

  3.培养学生能够灵活运用所学的知识,灵活的解决一些简单的实际问题。

  教学重点:

  掌握平均数的意义。

  教学难点:

  掌握求平均数的方法。

  教学过程:

  一、复习引入

  三年级二班分成三组投小篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每一组投中多少个?

  提问:题目的已知条件和问题分别是什么?

  要求平均每一组投中多少个?应该怎样列?

  提问:(28+33+23)3表示什么?3表示什么?把投中的总数以3表示什么?

  二、快乐体验,学习新知

  1、出示教科书第43页的例题2。

  提问:从这两张统计表中,大家发现了什么?

  在一场篮球比赛中,除了技术因素以外,还有什么因素也比较重要?

  场上哪一个对的身高占优势,我们能根据个别队员来作判断吗?我们要看整个对的平均身高。现在就请大家算一算,哪一个对的平均身高占优势。

  2、学生动手列式计算。

  3、教师:从这两个平均数,能反映出这两个队除技术外的另一个实力,说明平均书可以反映一组数据的总体情况和区别于不同数据的总体情况,这是我们学习完平均数的一个重要的作用。

  三、巩固练习

  1、科书第45页练习十一的第4题:

  (1)完成第1小题。提问:什么叫月平均销售量?

  要求哪种饼干月平均销售量多?多多少?应该怎样列式?

  (2)完成第2小题让学生自由发表看法。

  (3)完成第3小题。你从图中还得到什么信息,告诉全班同学。

  2、练习十一的第5题。

  学生独立完成,集体订正。

  四、课堂小结:

  本节课学习了什么?你有什么收获?

小学数学平均数教学设计一等奖第 3 篇

教学内容:

  义务教育课程标准青岛版(五·四分段)小学数学四年级上册P131~133。

  教学目标:

  1、通过学生自主探究,理解平均数的意义,掌握求平均数的方法,学会求平均数。

  2、学生经历探究求平均数的过程,培养操作、观察、归纳、概括和自主探究的能力。

  3、培养学生在探究活动中获得积极的情感体验和合作意识,激发学习数学的兴趣,增强学好数学的信心。

  教学重点:

  理解平均数的意义,掌握求平均数的方法,并能灵活运用所学知识解决实际问题。

  教学难点:

  平均数意义的理解。

  教学准备:

  课件、小正方体、学习评价表。

  教学过程:

  一、创设情境,提出问题

  课件展示校园篮球场上四(1)班和四(2)班篮球比赛的精彩片断[四(1)班的得分明显落后,学生观赏。

  提出问题:假如你是四(1)班的教练,这时你准备怎么做?你在换运动员上场时,会考虑哪些因素?

  出示两名运动员平日训练在小组赛中的得分情况统计表,如下:

  现在就请你当教练,根据上面统计表中的数据,你会选谁上场?并说出自己强有力的理由。(学生充分讨论,发表自己的意见)

  [评析:教师恰当运用CAI课件,创设一个学生熟悉且比较喜欢的真实生活情境,让学生身临其境,自己提出在比分落后的情况下“需要换人”这样一个生活化的问题。这样,不仅一下子激发了学生积极参与的兴趣,培养了学生的问题意识,而且在不知不觉中引发了学生的思考。通过小组赛中得分情况统计表,又将生活化问题转化为根据“平均分”换人这样一个数学问题,使学生感受到平均数产生的需要,为下面的探索活动提供了动力与明确了方向。]

  二、解决问题,探求新知

  怎样计算7号和8号运动员的平均分呢?下面,请同学们根据统计表中的数据和手中的操作材料,小组合作,共同来探讨。注意:一个小正方体代表一分。看哪个小组最先完成。

  1、小组合作探求算法。

  2、汇报交流。

  操作法:重点让学生把移多补少求平均数的方法讲明白。

  小结:刚才同学们都是在总数不变的情况下,把多的移走补给了少的,使它们变得同样多,这个同样多的数就是它们的平均分。

  计算法:重点让学生理解平均分除了可以用移多补少的方法求出来外,还可以先求出各场得分总数,再除以上场的次数,也可以得出每个队员的平均分。

  小结:同学们通过自己的探索,解决了选谁上场的问题。因为7号运动员的平均分11分高于8号运动员的平均分10分,所以应选7号运动员上场。同时,我们知道求平均数有两种算法,数据少的时候可以用移多补少的方法,数据多的时候用计算的方法会更方便。(板书课题和算式,如下)

  (9+11+13)÷3=11(分)

  (7+13+12+8)÷4=10(分)

  [评析:学生的学习过程充满了自主性、探索性与合作性。教师充分发挥学生的主体作用,放手让他们在开放的空间里运用手中的材料动手操作、自主探索,解决了问题。这既是一个学生自我探究的过程,也是一个相互交流的过程。教师只是以参与者、合作者的身份融入学生的活动中,和他们平等相处,及时获取反馈信息,引领学生归纳概括出平均数的计算方法。]

  3、理解平均数的意义。

  对10分的理解:你对10分这个数是怎样认识与理解的?与它的各场得分相比较,你有什么发现?10分是8号运动员哪一场的得分?

  对11分的理解:11分是7号运动员第三场的得分吗?为什么?它是什么?

  小结:平均数比大数小,比小数大,介于二者之间。它不是一个实实在在的数,可能存在于一组数据之中,也可能不存在。平均数能较好地反映出一组数据的整体水平。(板书:比最大数小、比最小数大、较好地反映出一组数据的整体水平)

  [评析:在学生的亲自感受中,他们用自己质朴而稚嫩的语言道出了他们对平均数意义的理解,虽然这只是粗浅的,但却是非常有价值的。]

  三、实践运用,体验生活

  在生活中,你见过平均数吗?

  (学生列举日常生活中见到的平均数的例子)

  在我们的生活、生产,特别是在统计当中,平均数的应用非常广泛,因为它能帮助我们了解事物的整体水平与分析存在的问题。

  评价时,师问:看着王红的成绩,你想对她说点什么?

  不计算,估一估他们的平均身高会是哪个答案?(让学生谈观点,加深对平均数意义的理解)

  先不计算,同学们估计可能会是多少?然后用自己喜欢的方法计算一下,他们的平均成绩是多少次?

  4。过河问题。

  身高145厘米的小华,要过平均水深110厘米的小河到底有没有危险?(让学生在讨论的过程中,进一步感受平均数的意义)

  通过这个题目的思考,你觉得应该对大家说点什么?(没错,徐老师希望同学们每天都能安安全全地来校,平平安安地回家)

  [评析:练习设计由浅入深,形式多样,且能紧密联系现实生活实际,不仅加深了学生对本课知识的理解,同时提高了学生运用知识解决实际问题的能力。]

  四、评价总结,拓展延伸

  通过本节课的学习,大家肯定都想知道自己表现如何。现在请拿出学习评价表,给自己一个诚恳的评价吧!(附表,如下)

  学习评价表

  本节课,你认为自己的表现怎样?请在相应栏目中填上相应的分数,并算出平均分。(优秀90分,良好80分,一般70分)

  (小组交流后,学生展示)

  看着自己的评价表,你想对大家说点什么?你觉得本节课有什么收获?

小学数学平均数教学设计一等奖第 4 篇

 教学内容:

  P92~94

  教学目标:

  1、在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果使整数)。

  2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

  3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,树立学习数学的信心。

  教学重点:

  理解平均数的意义,学会求简单数据的平均数。

  教学过程:

  一、创设情境,提出问题

  1、谈话:同学们,昨天中午我们代伙的同学在教室里举行了一次套圈比赛,他们每人套10了次,想不想知道他们套中了几个?

  2、指名汇报,回答问题

  陈璇:5个;戴之淳:3个。问:陈璇套得准一些还是戴之淳套得准一些?

  孟子又:3个;陆庭臻4个。问:是这两位女生套得准一些还是这两位男生套得准一些?你是怎么知道的?

  3、谈话:(出示主题图)。看,图上的同学们也在套圈,他们每人套了15个。

  4、指导学生看图,读图(纵、横轴表示的含义;每一格表示的数量)

  5、问:你能从图上看出每人套中了多少个吗?(根据学生回答在图中标出数量,并根据回答要求学生说说自己是怎么看出数量的多少的)。

  6、问:除了能从图中看每人套中的个数外,你还看出了什么?

  二、自主探索,解决问题

  1、问:你能不能从图中一眼看出是男生套得准一些还是女生套得准一些呢?

  2、指名汇报,说明理由。

  3、说明:有道理。他们两队的人数不同,所以我们不能一个人一个人地比较,只有分别求出“男生平均每人套多少个”和“女生平均每人套多少个”,用这样的数来体现他们套圈成绩的整体水平。

  4、男生套圈成绩的平均数。

  ⑴观察男生成绩统计图,想一想,怎样使他们每人套中的个数相等?(根据学生回答归纳出“移多补少”并板书。)

  ⑵列式计算。理解算式含义。(归纳“先合再分”并板书。)

  ⑶说明:这里的“7”就是男生套圈成绩的平均数。(板书课题)它表示将原先几个大小不等的数,通过移多补少或者先合再分的方法,得到的一个相等的数。

  4、女生套圈成绩的平均数。

  ⑴你会求女生套中的平均数吗?

  ⑵学生尝试练习并指名学生板演。

  ⑶评析:算式每步的含义。

  这里为什么是用女生套中的总数除以5而不是除以4?

  得到的“6”在这里是什么数?表示什么?

  现在你知道是男生套得准一些还是女生套得准一些吗?

  5、观察统计图,男生平均每人套中7个,这里的平均数“7”比哪个数大?比哪个数小?

  再观察女生成绩统计图,平均数“6”是不是也有这样的特点呢?

  6、小结:平均数的大小应该在一组数据中的最大数与最小数之间。平均数是我们计算出的结果,它表示的是一组数据的平均水平,并不一定这一组数据都等于这个平均数,有些可能比平均数大,有些可能比平均数小,有些可能和平均数相等。

  三、巩固练习,拓展应用

  1、P94.2

  出示题目,问:这三条彩带中最长的有多长?最短的呢?这道题要求什么?

  想一想,你能不能估计出这三条丝带的平均长度在xcm——xcm之间?

  学生尝试练习后评讲。

  2、刚才我们一起认识了平均数,也知道如何求平均数,接下来我们要遇到生活中有关平均数的问题。一起来看一看。

  出示下列辨析题。

  ⑴小强身高30厘米,一条小河平均水深100厘米,他下河玩耍肯定安全。

  ⑵在“书香校园”活动中,我校同学平均每人捐书3本。那么,全校每个同学一定都捐了3本书。

  ⑶学校篮球队队员的平均身高是160cm。

  ①李强是学校篮球队队员,他的身高不可能是155m。

  ②学校篮球队中可能有身高超过160cm的队员。

  3、出示本班级第一小组学生身高情况统计表。

  ⑴老师请一位同学帮着算了一下这个组同学的平均身高,得出的结果是“这个小组同学的平均身高是146m”。不用计算,你能不能知道他算得对不对呢?(后出示正确的计算结果)

  ⑵由此,你能不能猜测一下,三(3)班全班同学的平均身高大约是多少厘米吗?

  ⑶老师也在网上查找了一些资料:我国三年级小学生的平均身高大约是135cm。看到这个数据,结合你自己的身高,你有什么想法?

  四、评价总结

  1、刚才同学们都参与得很热烈,你们觉得田老师这节课上得怎么样?如果请你给这节课打个分,你会打多少分呢?每个小组商量一下得分情况,然后给出一个分数(10分制)。

  问:这么多分数,以谁的分数为准呢?(计算平均分)

  2、学了这节课,你有什么收获?

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号