当前位置:首页 > 教案教学设计 > 教学设计一等奖

倍数与因数教学设计一等奖

日期:2022-04-08

这是倍数与因数教学设计一等奖,是优秀的教学设计一等奖文章,供老师家长们参考学习。

倍数与因数教学设计一等奖

倍数与因数教学设计一等奖第 1 篇

 一、本元单知识框架

  二、本单元学习内容的前后联系

  三、与本单元相关知识的学习情况分析

  这届学生,我是从五年级开始任教的。要是说对他们十分了解,自然是不太可能的,毕竟我们相处的时间是相对较短的。虽然如此,我对他们还是有一个学期的教学了解,多少能说出点关于对他们的学习情况,不论准确与否。

  根据我在上学期的教学零散了解,学生在整数四则运算方面没有多大的问题,主要是一些计算的准确率还没有达到一定目标,有些看似简单的计算如18×2=32,不知是出于什么原因,学生就是算错。当然,计算错,不一定就说明学生不会计算,有可能又是一个“一不小心!”。尽管分析是如此,事实存在的一些非本质性计算问题,多少会影响现在的这个单元的学习的。

  为了使学生能顺利学完并努力做到学好这个单元的知识,一方面加强要加强克服前阶段关于学习上存在的一些不足;另一方面要扎扎实实地学好这个单元的知识,为今后学习与之相关内容打下不敢说是牢固、但可说是踏实的基础。

  四、本单元教学目标

  1.理解因数、倍数、质数、合数这些数的概念,能用概念进行相关语句的判断并学会求这些数的方法

  2.经过自主探索,掌握2、3、5的倍数的特征,能用特征进行相关语句的判断

  3.通过本单元学习,进一步培养学生的数学抽象能力

  五、本单元教学重点、难点

  教学重点:学生对因数、倍数、质数、合数等一些抽象概念的理解以及2、3、5的倍数的特征探索过程

  教学难点:学生对因数、倍数、质数、合数等一些抽象概念的理解

  六、本单元评价要点

  1.能否理解因数、倍数、质数、合数这些概念、是否会用他们进行一些简单的判断

  2.有没有掌握2、3、5倍数的特征,是否能根据三个数的特征解决一些实际问题

  3.观察学习数学热情是否得到增强!

  七、各小节教学目标及课时安排

  本单元计划课时数:11节

  教学内容教学目标计划课时授课日期

  因数和倍数的意义1.理解因数和倍数的意义,知道因数可数、倍数无法数、分清一组因数中最大是什么?、若干个最小倍数中最小是什么?

  2.掌握如何求一个数的因数和倍数方法并能做到熟练、完整,掌握有序的表达形式和常见的几种方式。如:一一列举、集合圈、线段图等。

  3节课

  2、3、5的倍数的特征1.通过自我探究,掌握2、3、5的倍数特征

  2.能用三个数的特征解决实际问题3节课

  质数、合数和11.理解并掌握质数、合数和1的概念,掌握他们之间区别。熟练判断出100以内的质数

  2.知道两个质数相乘的积是合数。反之,合数也可以分解两个或两个以上的质数。掌握一般分解方法以及横竖式的表达形式

  。2节课

  单元测试及分析留待教学测试后填写

  3节课

  合计15节课

  八、各课时教学设计

  第一节《因数和倍数意义》教学设计

  (课标人教实验教科书12---16页的学习内容)

  一、教学目标

  1.理解因数和倍数的意义,分清现在所学因数与以往乘法学习中因数的区别;

  2.通过不完全列举一个数的因数和倍数,让学生初步感受因数是可数的,自然得出因数的个数是有限的;而倍数是无法写完全,也就是说倍数的个数是无限的。是否存在最大和最小的问题。

  3.初步学会求一个数的因数和倍数方法。

  4.经历学习后,使学生初步感受原来学习的看似简单的整数乘法居然有如此大的深藏奥秘,激发学生进一步想学习它的热情!

  二、教学重点、难点

  1.教学重点:对因数和倍数意义的理解和运用性判断。

  2.教学难点:完整地表达数之间的因数和倍数关系

  三、预计教学时间:1节

  四、教学活动

  (一)基础训练

  【口算】2×6=1×18=2×15=()×()=24()×()=30

  3×4=2×9=1×30=()×()=24()×()=30

  1×12=3×6=5×6=()×()=24()×()=30

  3×10=()×()=24()×()=30

  【解答题】请你用一句话小结上面四组口算题(根据自己的学生说的)

  (二)新知学习

  【典型例题】

  1.请你说说下面两组计算,有什么相同和什么不同?(引入因数和倍数的前提学习条件)

倍数与因数教学设计一等奖第 2 篇

  【教学内容】

  人教版数学五年级下册P12一14,练习二。

  【教学过程】

  一、操作空间,初步感知。

  1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

  2.学生动手操作,并与同桌交流摆法。

  3.请用算式表达你的摆法。

  汇报:1×12=12,2×6=12,3×4=12。

  【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。

  二、探索空间,理解新知。

  1.理解因数和倍数。

  (1)观察3×4=12,你能从数学的角度说说它们之间的关系吗? 师根据学生的表达完成以下板书: 3是12的因数 12是3的倍数 4是12的因数 12是4的倍数 3和4是12的因数 12是3和4的倍数

  (2)用因数和倍数说说算式1×12=12,2×6=12的关系。

  (3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。

  2.求一个数的因数。

  (1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。 学生汇报。

  师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。

  出示要求:

  ①可独立完成,也可同桌合作。

  ②可借助刚才找出12的所有因数的方法。

  ③写出36的所有因数。

  ④想一想,怎样找才能保证既不重复,又不遗漏。 教师巡视,展示学生几种答案。

  生1:1,2,3,4,9,12,36。

  生2:1,36,2,18,3,12,4,9,6。

  生3:1,4,2,36,9,3,6,12,18。

  (2)比较喜欢哪一种答案?为什么?

  用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)

  师:有序思考更能准确找出一个数的所有因数。 完成板书:描述式、集合式。

  (3)30的因数有哪些?

  【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。

  3.求一个数的倍数。

  (1)3的倍数有:——,怎样

  有序地找,有多少个?

  找一个数的倍数,用1,2,3,4?分别乘这个数。 (2)练一练:6的倍数有: ,40以内6的倍数有:一o

  【评析】

  由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。

  4.发现规律。

  观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现? 根据学生汇报,归纳:一个数的最小因数是I,最大因数是它本身;一个数的最小倍数是它本身,没有最大的倍数。

  【评析】

  通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。 三、归纳空间,内化新知。

  师生共同总结:

  (1)因数和倍数是相互的,不能单独存在。

  (2)找一个数的因数和倍数,应有序思考。

  四、拓展空间,应用新知。

  1、15的因数有:——,15的倍数有:——。

  2.判断。

  (1)6是因数,24是倍数。( )

  (2)3.6÷4=0.9,所以3.6是4的因数。 ( )

  (3)1是1,2,3,4?的因数。 ( )

  (4)一个数的最小倍数是21,这个数的因数有1,5,25。( )

  3、选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。

  4、举座位号起立游戏。

  (1)5的倍数。

  (2)48的因数。

  (3)既是9的倍数,又是36的因数。

  (4)怎样说一句话让还坐着的同学全部起立。

  【评析】

  本环节的前3题侧重于巩固新知,后2题侧重于发展思维。通过“说一句话”和“起立游戏”,展现了学生的个性思维,体现了知识的应用价值。

  【反思】

  本课教学设计重在让学生通过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点: 一、留足空间,让探索有质量。

  留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一,把教材中的飞机图改为拼长方形,让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现提供了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思

  维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:通过观察12,36,30的因数和3,6的倍数,你发现了什么?由于提供了丰富的观察对象,保证了观察的目的性。第四:让学生“选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话”。不拘形式的说话空间,不仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。 二、适度引导,让探索有方向。

  引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。

  在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。

  整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断形成、知识不断建构的过程。

倍数与因数教学设计一等奖第 3 篇

 教学目标:

  1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的数及其个数方面的特征。

  2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。

  教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。

  教学难点:探索求一个数因数或倍数的方法。

  教具准备:多媒体课件、学生练习题

  教学过程:

  一、谈话导入。

  师:同学们看这是什么?

  生:小正方形。

  师:想不想知道王老师给大家带来了多少个这样的小正方形?

  生:想。

  师:多少个?

  生:12个。

  师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?

  生:能。

  【设计意图】:以学生熟悉情景引入,激发学生的好奇心。

  二、教学因数和倍数的意义

  师:增加一点难度,用一道算式说明你的想法,让其他同学猜一猜你是怎么摆的,好吗?

  生:好!

  学生汇报:

  生1:1×12=12

  师:他是怎么摆的?

  生:一行摆1个,摆了12行;也可以一行摆12个,摆1行。

  课件出示摆法。

  师:把第一种摆法竖起来就和第二种摆法一样了,我们把这两种摆法算作一种摆法。(用课件舍去一种)

  生2:2×6=12

  师:猜一猜他是在怎么摆的?

  生:一行摆2个,摆了6行;也可以一行摆6个,摆2行。

  师:这两种情况,我们也算一种。

  生3: 3×4=12

  师:他又是怎么摆的?

  生:一行摆3个,摆了4行;也可以一行摆4个,摆3行。

  师:还有其他摆法吗?

  生:没有了。

  师:对,如果把12个同样大小的正方形拼成一个长方形,就只有这三种摆法,大家千万不要小看了这三种摆法,更不要小看了这三种摆法下面的三道乘法算式,今天我们的新课就藏在这三道乘法算式里面。因数和倍数(板书课题)

  2.教学“因数和倍数”的意义。

  师:我们以3×4=12为例,在数学上可以说3是12的因数,4也是12的因数,12是3的倍数,12也是4 的倍数。这里还有两道算式,同桌两个同学先互相说一说谁是谁的因数,谁是谁的倍数。

  学生汇报:任选一道回答。

  生1:12是12的因数,1是12的因数,12是2的倍数,12是1的倍数。

  师:说的多好啊!虽然有点像绕口令,但数学上确实是这样的。我们再一起说一遍。

  师:还有一道算式,谁来说一说?

  生:2是12的因数,6是12的因数,12是2的倍数,12也是6的倍数。

  师明确:为了研究方便,我们所说的因数和倍数都是指自然数,(0除外)。

  师:通过刚才的练习,你有没有发现12的因数一共有哪些? (生边说老师边有序的用课件出示12的所有的因数。)

  师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。

  3、5、18、20、36

  【设计意图】让学生经历知识的形成过程。通过实际例子,让学生进一步理解,因数和倍数之间存在着相互依存的关系。

  三、教学寻找因数的方法。

  1、找一个数的因数。

  师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?

  师:说出几个36的因数并不难,关键是怎样找的既有序又全面,有没有信心挑战一下?

  生:有。

  师:老师提个要求:

  1)、可以独立完成,也可以同桌交流。

  2)、把这个数的因数找全以后,把你的方法记录在下面。并总结你是怎样找的。

  2、探索交流找一个数的因数的方法。

  找一名有代表性的作业板书在黑板上。

  师:他找对了吗?

  生:没有,漏下了一对。

  师:为什么会漏掉?仅仅是因为粗心吗?

  生:不是,他没有按照一定的顺序找!

  师:那么要找到36所有的因数关键是什么?

  生:有序。

  师生共同边说边有序的把36的所有的因数板书出来。 师:还有问题吗?

  生:没有了。

  生:你们没有,老师有一个问题,你们为什么找到6就不再接着往下找了?

  生:再接着找就重复了。

  师:那么找到什么时候就不找了?

  生:找到重复了,就不在往下找了。

  师、生共同总结找因数的方法。(一对一对有序的找,一直找到重复为止)。

  师:有失误的学生对自己的错误进行调整。

  3、巩固练习。

  找出下面各数的因数。

  4、寻找一个数的因数的特点。

  【设计意图】放手让学生自主找一个数的因数,并总结找一个数因数的方法。学生非常喜欢,而且也能够让学生在活动中提升。

  四、教学寻找倍数的方法。

  1、找一个数的倍数。

  师:刚才我们学习了找一个数的因数,那么你能像刚才一样有序的找出一个数的所有倍数吗?

  生:能!

  师:试试看,找个小的可以吗?

  生:行!

  师:找一下3的倍数。30秒时间,把答案写在练习纸上。 ??

  师:有什么问题吗?

  生:老师,写不完。

  师:为什么写不完?

  生:有很多个!

  师:那怎么才能全都表示出来呢?

  生:可以加省略号。

  师:你太厉害了!你把语文上的知识都用上了,太真聪明了!难道不该再来点掌声吗?

  师:谁能总结一下你是怎样找到的?

  生:从小到大依次乘自然数。

  师:你真会思考!

  课件出示3的倍数。

  2、找5、7的倍数。

  师:我们再来练习找一下5的倍数。

  生:5的倍数有:5、10、15、20、25??

  生:7的倍数有:7、14、21、28、35??

  师:你能像总结一个数因数的特点一样,来总结一下一个数的倍数有什么特征吗?

  生:能!

  学生总结:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

  【设计意图】在探索求一个数的倍数和因数的方法时,创设具体的情境让学生去合作交流,并结合具体事例,让学生自己观察并发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征,丰富了教学方式,让学生在观察中发现,在合作中体验成功的喜悦,在主动参与、乐于探究中发展自我。

  四、知识拓展

  认识“完美数”。

  师:(课件出示6的因数)在6的因数中还藏着另外一个秘密,(这是孩子们都瞪大眼睛在看,在听!)我们把6的因数中最大的一个去掉,剩下1、2、3,然后把它们再加起来又回到6本身,数学家给这样的数起了一个名字,叫“完美数”。依次出示第二个、第三个一直到第六个完美数。

  小结:其实有关因数和倍数的秘密还有很多,它们在等待着同学们在以后的学习中去研究、去探索。

  【设计意图】丰富学生的知识,陶冶学生的情操。

  教学反思:

  找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时如果再给予有效的指导和总结就更好了。

倍数与因数教学设计一等奖第 4 篇

教学目标

  通过对比学习,加深因数和倍数意义的理解,通过在意义、找的方法以及计数等几个方面对比,进一步理清因数与倍数的区别于联系,准确把握因数与倍数。

  教学重点:因数与倍数的对比。

  教学难点:用准确语言表达。

  教学准备:实物投影

  教学活动

  (一 )基础训练

  【口答】

  下面的说法对码?如果不对,请改正。

  (1)32÷4=8,所以42是倍数,4是因数

  (2)12的因数只有2、3、4、6、12

  (3)1是1,2,3,…的因数

  (4)60的最大因数和最小倍数都是60

  (5)5一共有10000个倍数

  (6)一个数的倍数一定大于它的因数

  【解答题】

  因数能否数完?倍数呢?

  (二) 新知学习

  【典型例题】

  1.分别找出16的因数和倍数

  2.仔细想想,找出16的所有因数和倍数的感受相同码?

  2.填表。

  不同方面联系

  意义寻找方法能否找完有无最大与最小表示

  因数

  倍数

  (三) 巩固练习(10题)

  【基础练习】

  1.选择正确答案的序号填在括号内。

  (1)下面算式中能表示63是7的倍数的算式是()

  ① 7×9=63 ② 63÷8=7……7 ③ 63÷21=3

  (2)9的因数有( )个

  ① 2 ② 3③ 4

  (3)不能够表示出“倍数”与“因数”关系的算式是()

  ① 19÷3 = 6……1② 24÷6=4 ③ 17×4=68

  【提高练习】

  1. 按要求写数

  6的倍数(写出5个) 32的所有因数 120的所有因数

  2.练一练第7题。

  教师可以鼓励学生课后查阅相关资料,把数学学习由课堂引申到课外。

  通过本题计算在月球和火星上的体重,激发学生的好奇心,进行保护地球的环保教育

  3.填表。

  (1)48个同学表演团体操,把队伍的排列情况填写完整。

  排数123456789

  每排人数4824

  每排都是48的因数码?

  (2)乘坐碰碰车每人应付8元,你能把表填完整码?

  乘坐人数12345……

  应付元数816

  【拓展练习】

  1.填数。

  2.五年(1)班同学参加植树活动,要植树24棵,如果要求每行植树的棵树相同,有几种不同的植法?如果要50棵树呢?

  向学生简介林可以植树的好处,净化空气,还可以降低噪音,美化环境的功效。

  (五)教学效果评价(小测题2—3题)

  1.24的因数有哪些?

  2.36是哪些数的倍数?

  课后反思:

  通过引导学生从一个数的倍数的定义出发,推出该数和任意非零自然数之积都是该数的倍数。2的倍数也就是2和任意非零自然数的乘积,学生在列乘法算式时发现这样的算式是列不完的,总结出2的倍数的个数是无限的。进而推倒出:一个数的倍数的个数是无限的。只有最小的倍数,没有最大的倍数。学生亲历了知识的形成过程,既探究了知识,又形成了总结概括的能力。

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号