当前位置:首页 > 教案教学设计 > 数学教案

3的倍数的特征优秀教案

日期:2021-12-06

这是3的倍数的特征优秀教案,是优秀的数学教案文章,供老师家长们参考学习。

3的倍数的特征优秀教案

3的倍数的特征优秀教案第1部分

  教学目标:

  1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。

  2、培养分析、比较及综合概括能力。

  3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。

  教学重点:

  掌握3的倍数的特征,正确判断一个数是否是3的倍数。

  教学难点:

  探索3的倍数的特征。

  教学过程:

  一、【创设情景,明确目标】(3分钟)

  (一)创设情景,反馈预习

  1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?

  P:16、24、85、102、138、170、

  2的倍数:16、24、102、138、170

  5的倍数:85、170

  即是2的倍数又是5的倍数:170

  师:说一说,你是怎么想的?

  生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.

  2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

  生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。

  师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。

  3、教师板书课题:3的倍数的特征。

  (二)明确目标,引领方法

  1、出示学习目标(见学案),生自读目标。

  2、同伴说说自己的理解,谈谈如何实现目标。

  【设计意图】交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。

  二、【自主学习,同伴合作】(15分钟)

  (一)自主学习,自我感知

  1、小棒游戏,探究规律

  师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?

  师:你来!

  师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。

  学生摆出:51

  师:51是3的倍数。我算的比计算器快吧?

  师:能摆一个三位数吗?

  学生摆出:312

  师:312是3的倍数。

  师:再来一个难点的。

  学生摆出:1123

  师:1123不是3的倍数。

  师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。

  2、小组合作探究

  (1)用3根小棒摆一个数,这些都是3的倍数吗?

  师:我们一起来看探究要求:用相应根数的小棒在数位表上各摆出3个数。

  小组内合理分工,请大家看一下导学案的合作要求

  ①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。

  ②用计算器算一算,将3的倍数圈出来。

  ③仔细观察表格,从中你发现了什么?

  (2)用4根再摆出一些数,这些都是3的倍数吗?

  (3)用6根再摆出一些数,这些都是3的倍数吗?

  (4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?

  预设

  第一组:用3根小棒摆:2、12、102,都分别是3的倍数。

  第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。

  第三族,用6根小棒摆:都是3的倍数。

  问题:你发现了什么?

  生:我们发现了3根、6根小棒摆出来的数都是3的倍数。

  师评价:关键要看小棒的根数,了不起的发现。

  生:只要小棒的根数是3的倍数,这个数就是3的倍数。

  师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。

  生:9根、12根、15根……都行——

  (5)真的是这么回事吗?以9为例摆摆看。

  师:来,说说你们小组摆出了哪个数,它是不是3的倍数?

  生:我用9根小棒摆出了36,36是3的倍数。

  师:哪个小组还想出三位数、四位数或是更大的数?

  生:我用9根小棒摆出了216,216是3的倍数。

  生:我用9根小棒摆出了3015,3015是3的倍数。

  师:说得完吗?

  生:说不完。

  师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?

  生:很合理。

  师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。

  师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。

  3、总结提升

  师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?

  师:小组内交流一下。

  小组活动。

  师:谁来说说?

  生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。

  生2:各个数位上数的和是3的倍数,这个数就是3的倍数。

  生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。

  师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。

  4、探究原因,区别理解

  (1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

  研究16

  师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)

  但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)

  用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)

  看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。

  通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。

  (2)问:为什么3的倍数特征要看各个数位相加的和呢?

  举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?

  一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,

  138分一分,试一试,看看是不是3的倍数

  一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。

  (2)总结:梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。

  P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)

  三、【巩固拓展,形成能力】(10分钟)

  (一)巩固训练,夯实基础

  1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

  把一个数各个数位上的数相加是3的倍数……

  2、圈出下面是3的倍数的数:42、78、111、165、655、5988

  3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?

  (预设:生1:1。

  师:可以吗?还有其他答案吗?

  生2:1,4,7都可以。

  师:理由呢?

  生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。

  师:恭喜你,三种可能都被你们猜中了!

  师:如果它既是2的倍数,又是3的倍数呢?

  生:24。

  师:为什么只有24可以呢?

  生:因为只有24既是2的倍数,又是3的倍数。)

  (二)拓展训练,灵活创新

  以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)

  13689362754、123456789

  老师:如果用各个数位之和是3的倍数,比较麻烦。

  但是我们用划掉3的倍数的方法求,这样即便是很复杂的'数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……

  后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。

  教师巡视,个别辅导。

  (二)同伴讨论,互助共进

  完成学案中“同伴合作,互助共进”内容。

  重点交流学生所举的例子。

  教师巡视,个别辅导。

  【设计意图】这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。

  四、【师生共学,交流分享】(5分钟)

  (一)小组展示,彰显风采

  指名小组进行汇报。

  (二)师生完善,共同提高

  1、学生纠正、补充、质疑

  2、教师精讲、点拨、评价

  在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。

  【设计意图】通过教师的点拨完善学生对比的认识。

  五、【巩固拓展,形成能力】(10分钟)

  (一)巩固训练,夯实基础

  先由学生自主完成学案中相应的内容,再同桌交流,完善答案。

  1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

  把一个数各个数位上的数相加是3的倍数……

  2、看一看哪些是3的倍数:42、78、111、165、655、5988

  原来判断是用除法,现在用加法。改革了

  3、不用计算,能快速算出来那个式子有余数吗?

  802、3;342、3

  4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数

  5、下面都是吗?789、345、654

  都是,有什么特点?相邻、连续三个自然数。

  是不是所有都是呢?举例:123.为什么呢?

  654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。

  6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。

3的倍数的特征优秀教案第2部分

一、教材分析

3的倍数的特征是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。教材是先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判断,学生理解起来有一定困难,因此,把它放在2、5的倍数的特征后面教学。学生已经学习了2、5的倍数的特征,但3的倍数的特征与2、5的倍数的特征有很大的区别,学生不能仅从一个数的个位加以观察、归纳来得出结论,因此对于孩子们来讲如何探索得出这个特征就较有难度,而对于一些学习能力较弱的孩子,能够正确掌握3的倍数的特征并加以正确运用都会有一定的难度。

二、教学目标

【知识与技能】

自主探索3的倍数特征的过程,掌握3的倍数的特征,能正确判断一个数是不是3的倍数。

【过程与方法】

逐步培养学生的观察力、分析能力、归纳概括能力和数学能力。

【情感态度与价值观】

加强数学与生活的联系,使学生体会到数学知识来源于生活,应用于生活。

三、教学重点

【教学重点】 理解3的倍数的特征。

【教学难点】 提高分析、归纳、概括、探究问题的能力

四、课前准备

PPT课件、师生平板、百数表、卡片。

五、教学过程

(一)复习导入

师:孩子们好,上节课我们学习已经了2和5的倍数的特征。大家看,下面的数哪些是2的倍数?哪些是5的倍数?你是怎样判断的? 上面的数哪些是3的倍数,你能快速判断出来吗?

(二)探究新知

1. 探究3的倍数的特征。

(1)拿出百数表,小组内同学合作,把3的倍数涂上红色。

(2)涂好后观察这些数有什么特点。 小组讨论:

提示: a.横着看,前10个3的倍数,个位分别是哪些数字? b.斜着看,你发现了什么? 小组内发言。每个学生都要发言。教师巡视指导。

2. 指名说一说,3的倍数有什么特点?

3. 师:你说的规律对三位数四位数成立吗?找几个数来检验一下。

3. 同桌合作验证规律:

师:找几个三位数、四位数,互相检验一下,如果各位上的数的和是3的倍数,这个数是不是3的倍数。

生:通过检验,这个规律适用于任何自然数。

4.牛刀小试。

判断下面的数,哪些是3的倍数,哪些不是3的倍数,并说说你是怎么判断的。

75 68 428 505 5400 3157

75、5400是3的倍数。因为7+5=12,12是3的倍数,5+4=9,9是3的倍数。 68、428、505、3157不是3的倍数。因为它们的各位上的数字和不是3的倍数. 5.探究3的倍数的规律。 (1)下面用数字卡片摆出的数中哪些是3的倍数?在每个数后面增加一个卡片,使这个三位数成为3的倍数。 2 4 5 8 4 6 9 6 小组合作探究:你有什么发现? (2)小组内发言,教师巡视。 交流:

(3)同桌互动:快速判断。 一个人说数,另一个人判断是不是3的倍数。

6.练一练:请你帮帮他。

小明到文具店买日记本,日记本的单价已看不清楚但知道一定是整数,他买了3本日记本,售货员阿姨说应付134元,小红认为不对。你能解释这是为什么吗?

日记本的单价是整数,小明买了3本日记本,所以总价应该是3的倍数。1+3+4=8,8不是3的倍数,所以134不是3的倍数,所以这3本日记本的总价一定不是134元。

7.小结:3的倍数的特征:

(1)3的倍数个位上可以是任意数,判断一个数是否是3的倍数,不能只看个位上的数。

(2)一个数各位上的数字之和是3的倍数,这个数就是3的倍数。

8.练习:火眼金睛辨对错

1. 1.个位上是3、6、9的数都是3的倍数。 (×)

2. 一个数是9的倍数,一定就是3的倍数。。 (√)

3. 由7、3、2组成的数都是3的倍数。 (√)

4.60同时是2、5、3的倍数。 (√)

(四)拓展提高。 用下面三张卡片,按要求摆数。

4 5 0

(1)是3的倍数( 450、540、405、504)

(2)同时是2和3的倍数(450、540、504)

(3)同时是3和5的倍数(450、540、405)

(4)同时是2、3、5的倍数(450、540)

(五)课堂总结:你有什么收获?

(六)板书设计

3的倍数的特征 一个数各位上的数字之和是3的倍数,这个数就是3的倍数。

六、教学反思

略。

3的倍数的特征优秀教案第3部分

  教学内容:义务教育教科书五年级下册第二单元第10页例2。

  教学目标

  知识与技能:掌握3的倍数的特征,能正确判断一个数是否是3的倍数。

  过程与方法:通过自主探究的活动,培养学生的推理、观察、概括能力。

  情感态度与价值观:渗透猜想,验证的思想,使学生感受到生活中蕴藏着丰富数学知识。

  教学重点:认识并掌握3的倍数的特征。

  教学难点:通过概括3的倍数的特征掌握一定的数学思想和方法。

  教学准备:微视频、微练习题

  教学流程:

  一、导入:

  昨天同学们已经看了微课视频,微课视频主要内容是什么?你学会了什么?还有那些不懂得的地方?你有什么问题想要在课堂上解决的?

  这节课我们带着大家的问题一起再学《3的倍数特征》,板书课题。

  二、新授课

  我们已经掌握了2和5的倍数的特征,根据什么来判断的?

  同学们猜测一下:什么样的数是3的倍数呢?

  1、个位上是3、6、9的数是3的倍数吗?

  你能举出相反的例子吗?(学生举例)

  2、圈数探索:(下面请大家拿出百数表,在百数表中圈3的倍数。快速浏览一遍所圈的数,说说3的倍数个位上可以是哪些数字?

  3、提问:像判断2和5的倍数那样,只看个位上的数字来判断3的倍数,行不行?

  4、换位探索:引导发现3的倍数与数字的顺序无关。

  (1)老师发现一个有趣的现象:百数表中有些数,比如27和72,都是3的倍数,像这样的数你还能说出几对来吗?这说明什么?(如果一个数是3的倍数,那么调换各个数位上数的顺序,同样还是3的倍数。)

  (2)再出示几个3的倍数(三位数),交换各数位上数的顺序,让学生检验是不是还是3的倍数。

  到底怎样的数是3的倍数呢?

  (3)观察百数图3的倍数的特点,斜着看,你有什么发现?

  (4)学生汇报发现规律斜着看,3的倍数各位上数的和是3的倍数。

  (5)看书验证(师:看书,验证自己的看法是否正确,并一边看书一边划出关键的词语。)

  5、教师小结:一个数各位上数的和是3的倍数,这个数是3的倍数。

  三、微练习题讲练。

  四、巩固练习

  1、在下面每个数的□里填一个数,使这个数有因数3,它们各有几种不同的填法?

  4□3□5□1276□198□

  2、能力练习

  判断下面的多位数能否被3整除,并说说你有什么好办法?

  3333666999912345678987654321

  3、把表中9的倍数涂上颜色,并思考:9的倍数都是3的倍数吗?反过来呢?

  五、全课小结,延伸新知。

  1、同学们通过昨天微课视频的学习和今天这节课的学习,你学会了什么?你又有什么收获?

  2、请大家应用今天的探究方法,课后研究其它整数的特征。

  六、布置作业。

  板书设计:3的倍数特征

  3的倍数特征:各位上数的和是3的倍数,这个数就是3的倍数。

3的倍数的特征优秀教案第4部分

  一、教学目标设置:

  依据一:《课程标准》

  1、总体和学段目标中的描述:

  (1)体验从具体情境中抽象出数的过程,掌握必要的运算技能。

  (2)初步学会与他人合作解决问题,尝试解释自己的思考过程。

  2。内容目标中的描述:

  掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征。

  依据二:《教师教学用书》中的单元目标的具体描述。

  使学生通过主探索,掌握2,5,3的倍数的特征。

  依据三:教材和学情

  教材分析:

  教材把课题确定为“探索活动”,其目的就是要让学生经历探索知识的过程。教材首先提出“我们研究了2、5倍数的特征,那么,3的倍数有什么特征”的问题,目的是引导学生思考和探索3的倍数的特征。教材提供了一张100以内的数目表,引导学生发现3的倍数特征。学生在探索过程中,发现3的倍数特征与2和5的倍数特征的不同,2、5的倍数特征主要观察数的个位,而3的倍数特征要观察各个数位数字的和是否是3的倍数。从而发现个位和十位都没有什么规律,而要找到各个数位上的和有什么规律。在初步得出结论的基础上,教师应进一步提出“这个规律对三位数是否成立”的问题,促使学生能自己造出更大的数来验证规律。需要注意的是在日常的练习与评价时,一般只要求学生判断100以内的数是否是3的倍数。因此,本课着重引导学生找到和发现着重点,从而归纳概括了3的倍数的特征。

  学情分析:

  学生在学习本课之前,已经学习了2和5的倍数的特征,养成善于动脑思考、讨论、交流与研究,积极进行小组合作的习惯。可以说,学生有了一定的自学与研究的能力。

  学生容易从末尾数字进行判断这个数是否是3的倍数。所以,在教学本课时,让学生通过观察、思考、分析、归纳等活动,让他们真正理解、掌握、判断3的倍数的方法。

  鉴于以上分析,本节课教学重难点:

  经历3的倍数的特征的探索过程,掌握3的倍数特征。

  教学目标:

  1。通过观察、小组交流等活动,经历探索3的倍数的特征的过程,掌握3的倍数的特征,会判断一个数是不是3的倍数。

  2。培养发展学生分析、观察、比较、操作、概括、猜测、验证、归纳的能力。

  3。学生通过探索与亲身参与实践活动,并能在活动中获得成功情感的体验。

  二、教学评价的设计:

  1、在小组内说一说3的倍数的特征。

  2、对同学板演情况进行正确判断,并能独立完成课堂练习题。

  三、教学过程:

  一、生活激趣,导入新知

  1、新闻导入:1月28日讯,郑州市实验小学多功能大厅内掀起了一场爱心捐款的热潮。学生们以班为单位,老师们以级部为单位纷纷走到捐款箱前,把一颗颗滚烫的爱心、一句句殷切的祝福,献给该校五年级七班一名身患再生障碍性贫血的同学张森。活动场面热烈,真情感人,整个大厅内爱心涌动,给人无限的温暖。本次活动全校师生共捐款85332元,用于张森同学的检查和治疗。

  此次爱心捐助活动,充分体现了实验小学师生团结互助的高尚情操和关爱帮助困难学生的人文精神,践行了“一方有难,八方支援”的传统美德。广大师生纷纷表示,希望张森同学在全体师生的关心支持下坚强地战胜疾病,早日康复,重返实验小学温暖的大家庭!

  2、让学生分别判断85332是不是2、5的倍数,并说明理由。

  结合学生的回答,板书:2、5的倍数看个位。

  如果将这些钱平均支付3次张森同学的手术费,不计算能判断每次手术费得到的钱数是不是整元数吗?

  你猜想什么样的数是3的倍数?

  同意他的猜想吗?(同意)

  他的猜想对不对呢?我们来继续研究。

  出示1~99的数表,让学生找出3的倍数。

  思考一下这位同学的猜想是否正确?

  学生从不同角度举例否定上面的猜想。

  那请同学们继续观察,3的倍数的个位可以是哪些数字?

  要判断一个数是不是3的倍数,能不能只看个位?(不能)

  究竟什么样的数才是3的倍数呢?这节课我们就来研究3的倍数的特征。(板书课题)

  【设计意图:同学们看到自己捐款的照片和过程出现在新闻报道中,顿时会情绪高涨起来。这不仅能让学生们的感情再次升华,更能让学生们感知到数学就在我们身边。】

  二、活动体验,探究新知

  1.自主生成,体验交流

  我猜每个同学都有自己的幸运数字,如果把你们小组内的幸运数字凑在一起,都会组成哪些数呢?

  小组合作要求:让学生先写出能组成的数(两位数、三位数或四位数都可以),并判断每个数是否是3的倍数,再写出自己组的发现。(具体内容略)

  学生合作探索,教师巡视参与。

  谁来代表你们小组汇报研究的情况?

  你能把刚才同学们交流的数进行分类吗?说明你分类的理由。

  同学们的思维可真开阔呀,想出了那么多分类的方法,真不简单!今天,让我们先走进3的倍数中去,看看它们蕴藏了什么样的数学的奥秘?

  (在实物投影上展示)几组前面小组合作中自主生成的3的倍数。

  小组讨论,教师巡视参与。

  组织全班交流。(略)

  小结:在用数字组数的过程中,①数字排列的顺序变了;②组成数的大小变了;③组数用的卡片上的数字没变;④卡片上的数字和没变。

  小组展示各组数字之和。

  在用数字组数的过程中,数字的和为什么没变?

  请同学们观察各位上的数字和,你有什么发现吗?到底什么样的数才是3的倍数?你能大胆地进行猜想吗?

  我的猜想是一个数的数字和是3的倍数的数,这个数就是3的倍数。(板书略)

  【设计意图:让学生通过幸运数字组数,尝试分类,发现某一组数字组成的数要么都是3的倍数,要么都不是3的倍数,再次激发学生的好奇心。然后让学生带着疑问讨论,理解一个数各位上的数字和的含义和算法,并对3的倍数的特征作进一步的猜想。】

  2.举例验证,建构模型

  要想知道这个猜想对不对,可以怎么办?

  谁能任举一例并说明具体的验证方法?

  师生共同讨论验证,并引导学生体会验证方法。(略)

  学生在小组内举例验证。

  汇报验证结果(在实物投影上展示),形成共识,得出结论,总结出规律。

  【设计意图:让学生在初步发现规律之后,举例验证,体现了从特殊到一般的思维过程。验证是本课教学的一个难点。这一过程,不仅让学生初步学会了举例验证的方法,而且体现了辩证唯物主义的思想。】

  3.巩固练习。

  (1)下面哪些数是3的倍数?

  29、84、45、54、108、180、801

  ①先出示29、84这两个数,让学生判断。

  ②出示45、54让学生判断,根据45是3的倍数,可以直接判断54也是3的倍数。

  ③同时出示105、150和501,引导学生先判断105是不是3的倍数,再直接判断150和501是不是3的倍数。

  (2)不计算,你能很快说出哪几题的结果有余数吗?

  48÷397÷3342÷3

  (3)在下面每个数的□里填上一个数字,使这个数是3的倍数。

  ①4□②3□5③12□④□12

  学生在4□的□中填出2、5、8后,师:请你们观察填的3个数字,能发现其中的规律吗?

  第②、③题的过程同上。

  第④题,学生练习后,师:为什么这题只有3种不同的答案?

  【设计意图:题目设置的层次性、趣味性符合了学生的认知规律,也有利于提高解题的灵活性。】

  三、学以致用,回归生活

  1.从生活中来,回生活中去。

  现在你能很快判断85332这个数是不是3的倍数了吗?(学生判断,并说明理由)

  2.数学小故事。

  淘气和笑笑是一对好朋友。放假时两人交换了联络电话,笑笑告诉淘气:“我家的电话号码是一个3的倍数。”可淘气不慎忘记了末尾的数字2338503(),只隐约记得是个非零偶数。想一想,淘气和笑笑还能联系上吗?请同学们课下讨论一下,帮淘气想想办法吧。

  【设计意图:从生活中来,再回到生活中去。让学生体会到数学与生活的联系,感受数学的作用,对培养学生的实践能力有很大的帮助。】

  四、总结全课

  今天这节课你有收获吗?3的倍数的数有什么特征?我们是怎么探索出这个规律的?

  师生共同总结探索过程。(略)

幼儿园学习网 | 联系方式 | 发展历程

Copyright 2010-2019 Qinzibuy.com 【亲亲园丁】 版权所有 备案编号:粤ICP备14102101号